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Preface

The goal of this study was to provide a single source document on the effects of noise jamming
on pulsed radar receivers. This study would cover three main topics in depth. These areas to be
covered are the sources of electrical noise, various noise jamming waveforms and the effects of each

jamming waveform on various pulsed radar receivers.

This thesis effort is concentrated on determining the power spectra of various noise jamming’
waveforms, determining the probability densities of the >utputs of conventional pulsed radar re-
ceivers and the effects of CW interference on conventional pulsed receivers. As such, this thesis is
only the beginning of what will hupefutly *e a continuing effort here at AFIT. Although several
texts were referenced in this effort, one document was extremely valuable. This important work

was Threshold Signals by James L. Lawson and George E. Uhlenbeck.

I am deeply indebted to my thesis advisor, Dr. Vittal P. Pyati, for his help in preparing this
thesis. He was able to keep me on a consistent track when I would begin to wander. I also wish to
thank Lt Col Meer and Lt Col Norman who both provided valuable assistance toward this effort.
They also sat on my thesis committee, for which I am indebted. I have to especially thank my wife,
Sue, for allowing me the flexibility to work at all hours at home without interruption. It really

made a difference.

Paul E. Bishop
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Abstract

A comprehensive study of the effects of noise jamming on various pulsed radar receiver types is
proposed. First, a literature review on the sources of electrical noise and various jamming waveforms
is presented. The power spectra for three noise jamming waveforms are rigorously derived. These
cases are shot noise in a parallel-plate diode, a series of pulses with random amplitudes and intervals,
and for a series of pulses with ra.. .om amplitudes, spacing and phases. Next, the probability density
functions for the output of linear and quadratic detectors are developed. For each detector type, the
probability density functions for the cases of noise only and signal plus noise are derived. Finally,
the effects of CW interference on conventional pulsed radar receivers is accomplished. This analysis
shows that the effect of a pure CW tone as an interfering signal is that it increases the minimum
power required for detection. As the CW tone is detuned from the signal carrier {requency the
minimum power required for detection increases until the detuning is so great that the effects of
the CW is negligible. This thesis lays the ,:ound work for a much broader future study of the

effects of noise jamming on various pulsed radar receiver types.
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A STUDY OF THE EFFECTS OF NOISE JAMMING

ON RADAR RECEIVERS

1. Introduction

A study of the effects of noise jamming on radar receivers is proposed. The result of this study
will be a comprehensive reference on the effects of various types of noise jamming on different types

of radar receivers.
1.1  Background

1.1.1 Radar Principles Radar is an acronym for radio detection and ranging. A radar
system can measure the range to a target by transmitting a pulse of electromagnetic energy, and
measuring the time the pulse takes to reflect off a target and return to the radar receiver. The time
for a pulse to travel one nautical mile and return is called a radar mile. A radar mile is defined as
12.35psec (6:8). However, before any information can be obtained from a transmitted radar signal,

that signal must first be detected.

A radar receiver detects a target by comparing the voltage of the received signal with a preset
threshold voltage. If the received voltage is greater than the threshold, the radar is said to have
detected a target. Radar receivers are designed to meet two main opposing specifications. These
are the probability of detection (Py) and probability of false alarm (Pys). A radar’s probability of
detection is a measure of how often the radar will actually detect a target when a target is present.
The probability of false alarm is a measure of how often a radar will decide that a target is present
when there is not a target present. The parameters of Py and Py, are used to determine a radar’s
required .signal-to-noise ratio (SNR) and the minimum required signal power (18.28). An inzrease

in the noise power will result in a decrease in the signal-to-noise ratio. The decrease in SNR, which




is due to an increase in noise power, causes a decrease in the radar’s probability of detection and

an increase in the radar’s probability of false alarm.

1.1.2  Radar Receiver Types There are several types of radar receivers in use today. Four of
the most common radar receiver designs can be grouped into four main categories. These are the
conventional receiver, the matched filter receiver, the pulse compression receiver, and the constant

false alarm rate (CFAR) re-eiver.

The conventional receiver uses a n.;alinear element followed by a threshold comparison device
to detect the presence of a radar pulse. One example of a conventional re ziver is a simple envelope
detector, also known as a linear detector. A se nd type of conventional receiver employs a quadratic
detector. This type of detector s also referred to as a square law detector. A matched Zlter receiver
is designed to maximize the output signal-to-noise ratio (18:369). The matched filter compares the
received waveform with a stored replica of the transm..ted pulse. One commonly used method of
implementing the matched filter is with a correlator (18:375). A correlator multiplies a received
signal with a reference signal, which is matched to the transmitted pulse, and then integrates the
resulting product over a specified time period. The typ. of pulse compression rece’ver analyzed is
the linear FM chirp receiver. This type of receiver is employed in high range resolution imaging
radars. The CFAR receiver will be the last receiver structure analyzed. The CFAR receiver employs
an adaptive threshold to maintain a constant probability of false ala: m (18:39). These four receiver

types are the most common structures ‘ound in search radar systems.

1.1.8 Noise Principles Electrical noise is electromagnetic energy across a broad range of
frequencies, which is characterized by random fluctuations of amplitude, frequency, phase, etc.
Noise is the chief parameter that limits a radar receiver’s sensitivity (18:18). Noise is also the
primary factor affecting a receiver’s Py and Pyq. There are several sources of electrical noise. Two
main categories of noise are the noise that originates within the receiver and noise external to the

receiver. Thermal noise is the primary type of noise generated in a radar receiver. The power of
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thermal noise is directly proportional to the temperature of the receiver. Thermal noise is present to

a certain degree in all electrical devices. Some types of external noise sources are man made noise,
cosmic noise and electronic countermeasures (ECM). The cffects of thermal noise can be reduced
by proper 12ceiver design, but can never ha totally eliminated. Radar receivers are designed for a

specific Py and Py, given the known value of thermal noise generated in the receiver.

A radar signal must travel through an environment where electrical noise is present. A radar
receiver receives a signal that is the summation of the desired radar waveform and the external
noise (15:36). A large value of noise power may cause the receiver to snnounce the presence of
a target when in reality, no target is present. This false detection is termed a false alarm, and
increases the radar’s probability of false alarm. A second effect of the external noise is to force
the receiver to conclude there is no target when an actual target is present, thereby decreasing the

radar’s probability of detection.

1.1.4 Noise Jamming Noise jamming is one of several active electronic countermeasures
techniques. The primary noise jamming method is to produce a signal that is as random, or r:oise-
like, as possible (6:83). The optimum noise jamming signal produced by a jammer should be a

close approximation of the thermal noise that is produced by the radar receiver (20:293).

One must consider several variables when analyzing the noise jamming problem. The jammer
power is one of the most critical parameters. To be effective, the level of the jamming must be
greater than the energy of the received pulsed radar signal (6:89). The statistical characteristics
of the noise jamming waveform are also important. For a noise jamming signal to be effective, the
statistics of the noise should be as close to the statistics of the receiver thermal noise as possible.
Similarly, a deception jammer attempts to mimic a radar target return. The primary goal of noise
jamming is to increase the radar’s Py, and decrease the radar’s Py by producing a high power noise

waveform that approximates the thermal noise already present in the receiver.
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1.2 Problem

Adequate employment of radar systeras, in an environment where noise jamming is used by
an enemy, requires knowledge of the effects of the neise jamming on the radar receiver. Conversely,
cffective noise jamming against an enemy radar requires the knowledge of the effects of the noise
jamming on the enemy’s radar receiver. Presently, no comprehensive study exists on the effects of
various noise jamming waveforms on different types of radar receivers' probability of false alarm
and probebility of detection. A comprehensive study includes the characterization of the sources
of electrical noise, the statistical parameters of different noise jamming waveforms, and an analysis
of the effects of these jamming waveforms on various radar receiver types. The goal of this thesis
effort is to provide such a comprehensive study. The result of this effort will be a single sourc.. of

reference for the effects of noise jamming on radar receivers.

1.8 Assumplions

Several assumptions must be made in the analysis of the effects of noise jamming on radar
receivers. The effects of jammer antenna gain, target characteristics, range, and jammer power can
be disregarded. Instead, the jammer-to-signal (3/S) ratio will be used in place of these parameters
(1:14-11-14-12). By the same reasoning, propagation effects will be disregarded. The radar receiver
will be assumed to have linear response characteristics up to the detector stage. This assumption is
a feasonable approximation, which allows for much simpler calculations. However, the detector is
generally a nonlinear network and cannot be modeled with linear characteristics. For all analyses,
only a single pulse will be considered. For the multiple pulse case there are simple techniques
available to determine the required signal-to-noise ratiu. A lossless system will be assumed. Any
system losses will be a constant factor that will not impact the effects of the noise jamming.
Finally, the radar receiver will be assumed not to incorporate any specific electronic counter-

countermeasures (ECCM). All these assumptions lead to a lossless receiver model that is linear up
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to the detector stage, which is affected only by the receiver’s thermal noise and the external noise
jamming. Therefore, the impact on the modeled receiver’s Py and Py, will be due solely to the

radar jamming.

1.4 Approach

The study of the effects of noise jamming will be approached in three parts. First, the
sources of electrical noise will be characterized. Next, the noise jamming waveform statistics will
be modeled. Finally, the noise jamming waveform statistics will be applied to the four different

receiver models to determine the effects of the jamming on the receiver’s Py, and Py.

The sources of electrical noise will be characterized by their statistical properties, specifically
by their probability density and power spectral density. The two primary sources of noise to be
modeled are thermal noise and shot noise. Both of these sources can be modeled as white (uniform
power spectral density) and Gaussian (normal) density. This model of noise most closely resembies
the noise present in the receiver. Shot noise and thermal noise are the primary sources of noise
used in radar noise jammers. These two noise sources are the most popular because they are simple

to generate by radar jammers.

After the sources of noise have been modeled, the noise jamming waveforms must be charac-
terized. As with the noise sources, the noise jamming waveforms are modeled by their statistical
properties. Although the noise jamming waveforms under consideration approach the ideal receiver
thermal noise characteristics, there are differences that must be considered in the analysis of their
effects on the radar receivers. These differences are reflected in the noise power spectral density
and probability density function. The noise jamming waveforms to be modeled are direct noise
amplified (DINA), frequency modulated (FM) by-noise, and amplitude modulated (AM) by-noise.
Also, continuous wave (single frequency) and random pulse waveforms must be considered. These

waveforms are used extensively in current radar noise jammers.
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The analysis of the jamming effects on the receivers will follow techniques demonstrated by
L:wson and Uhlenbeck (11) and those outlined by Bennighof and others, as well as several other
radar text books (1). The statistical characteristics of the noise jamming waveform will be applied
to the transfer characteristic of the radar receiver to determine the output noise characteristics.
The result of this analysis will be the probability density and power spectral density of the noise
output of the receiver. This will be accomplished for the cases where an actual target is present
and when a target is not present. One technique to analyze the effects of the radar jamming is to
apply the detectability criteria outlined by Lawson and Uhlenbeck (11:161-165). The application of
these criteria will give an indication to the required power levels for detection. A second technique
is to apply the two probability densities to the known decision technique for each radar receiver
type. This technique is similar to the likelihood ratio test. The results of the likelihood ratio will
determine the regions where the Py and Pyq can be calculated. The resulting Py and Pyq will be
compared with the P; and Py, for the receiver when no noise jamming is present. The difference
in the receiver’s Py and Py, will be due to the noise jamr ing. This analysis will be accomplished

for each of the noise jamming waveforms through each of the separate receiver types.

1.5 Scope

This study is limited to the analysis of the effects of noise jamming on scarch radars. However,
the techniques used are applicable to the analysis of the effects on tracking radars as well. Four
types of noise jamming waveforms will be used in the analysis. These waveforms are continuous
wave (CVv) interference, DINA, AM by-noise and FM by-noise. These waveforms are the major
jamming signals employed in current noise jammers (1.14-9). Only pulsed radars will be considered.
With some slight differences, the methods employed in the analysis can be aj plied to other radar
types, such as continuous wave (CW) and pulse doppler (PD) radars. Four basic pulsed radar
receiver types will be analyzed in this study. These receiver typce are the conventional receiver,

the matched filter receiver, the pulse compression receiver and the CFAR receiver.
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This thesis effort, as a part of a much larger study, is limited to the analysis of the effects of
continuous wave interference on two types of conventional receiver detector structures: the linear
detector, and the quadratic detector. The analysis is limited to the application of the deflection
criterion outlined by Lawson and Uhlenbeck to determine the minimum signal power required for
detection (11:161). Although this effort is limited to the analysis of CW interference on conventional
receivers, the techniques developed here can be easily applied to the analysis of the effects on other

receiver stiuctures by various jamming waveforms.

1.6 Summary

In this chapter, a study of the effects of noise jamm.ng on various radar receivers was proposed.
This chapter also provided the necessary background, assumptions, and the approach to accomplish
this study. This chapter also outlined the scope of this particular thesis effort. Chapter II is a
literature search on the sources of electrical noise and on various naise jamming waveforms. In
Chapter III the power spectra for three specific jamming waveforms are derived. The probability
density functions for the outputl of linear and quadratic detectors are developed in Chapter IV.
Probability density functions for the cases of noise only and of signal plus noise are derived for each
detector type. The effects of continuous wave interference on linear and quadratic detectors are
analyzed in Chapter V. Lastly, Chapter VI contains conclusions and recommendations for further

work in this study.
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II. Literature Review

Before analyzing the effects of noise jamming on radar receivers, one needs an understanding
of two main subject areas. These subject areas are the sources of electrical noise used in radar
jammers and noise jamming waveforms. The critical parameters to consider for the sources of noise
are the signal’s probability density function and power spectral density. These two parameters
are also important to the study of noise jamming waveforms. A great deal of research has been
conducted in these arzas. Thercfore, the goal of this literature review is to determine the most

recent research in these areas, and the results of that research.

2.1 Noise Sources

The basis of most radar jamming signals is a source of electrical noise. Any noise source
may be generally categorized in one of two ways, either by its power spectral density (PSD) or
the probability density function (PDF) of one of its parameters (usually the amplitude of the noise
voltage). The PDF of a signal is a measure of how likely a particular amplitude of the signal is,
whereas the PSD of a signal is a measure of how much power is contained in specific frequency
bands. Turner and others point out that “...the ECM goal is to produce white Gaussian noise in
the victim radar receiver” (19:118). Gaussian refers to the PDF of the amplitude of the noise. This
type of noise has a Gaussian or normal amplitude PDT (represented by the familiar bell shaped
curve). White noise is noise that has a uniform or flat PSD over all frequencies, analogous to the
concept of white light, which contains light at all visible wavelengths (9.48). The true goal of noise
jamming is to produce a Rayleigh distributed noise output from the victim receiver’s detector(7.66).
The Rayleigh PDF is closely related to the Gaussian PDT. Rayleigh distributed noise describes the
envelope of the output of a radar’s intermediate frequency (IF filter when the input of the filter is
Gaussian noise (18:24). It is sufficient for the analysis of the effects of noise on radar receivers that

the PSD of the noise be uniform only over a specific frequency bandwidth of interest, generally the
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receiver bandwidth. There are several sources of white Gaussian noise. The most common sources

are thermal noise and shot noise.

Thermal noise is due to the random motion or fluctuations of electrons in conductors (9:47).
When quantum mechanical effects are neglected, this type of noise has a flat or uniform power
spectral density, directly proportional to the temperature of the device (21:9). By the central limit
theorem, which states that for the sum of a large number of independent samples the limiting
form of the PDF is Gaussian, thermal noise has a Gaussian PDF with a mean value of zero and a
variance equal to the mean square value of the noise voltage (9:48-49). Thermal noise is present to
a certain extent in all electrical devices and can be exploited as a noise source for radar jammers.

Another source of electrical noise commonly used in radar jammers is shot noise.

Shot noise results from the flow of electrons in active devices such as vacuum tubes and
semiconductors. In vacuum tubes, the shot noise is caused by the current induced from the ran-
dom emission of electrons from the heated cathode (4:112). The shot noise in semiconductors is
caused by currer t flows generated when carriers (electrons and holes) randomly crossing the p-n
barrier (22:93). Davenport and Root provide the development of the PSD and PDF of shot noise
in thermionic vacuum tubes for both the temperature-limited diode and the space-charge-limited
diode cases (4:112-143). They showed that for frequencies less than the reciprocal of the electron
transit time in the diode, the PSD of shot noise can be approximated by a flat spectrum (4:123).
This spectrum is proportional to the average current through the diode, as opposed to the device
temperature as is the case for thermal noise. Shot noise is also a phenomenon present in semicon-
ductors. Van der Ziel developed expressions for shot noise in semiconductor diodes for both the
low frequency and high frequency cases (22:93-109). He also presents an expression for the PSD of
noise from a back-biased p-n diode, and states that large amounts of noise power can be gencrated
in this case (22:48). Penney and others describe the back- biased diode as an “extremely hot noise

generator” (9:71). 8y the application of the central limit theorem, the PDF of shot noise in both



vacuum tube diodes and semiconductor diodes can be shown to approach a Gaussian density. Shot

noise, like thermal noise, is one excellent source of white Gaussian noise.

The properties of Gaussian noise make it an ideal choice for radar jamming signals. Turner
and others define a measure of jamming performance, the noise quality (19:117-122). The noise
quality is a measure of how closely the PDF of the jamming signal approaches that of a Gaussian
density. The authors show that a high value of noise quality can lead to a reduction in the required
jamming-to-signal ratio (J/S) (19:117). For a given level of effectiveness against a pulsed radar,
this reduction in J/S can be as much as 17 dB (a factor of 50) over a low noise quality signal
that produces the same effect (19:117). Based on the work done by Turner and others, Knorr
and Karantanas outline a computer simulation, in use at the Naval Postgraduate School, for the
optimization of various jamming waveforms (10:273-277). This computer simulation compares the
PDF of the jamming waveform with a Gaussian PDF, having the same mean and variance, to
arrive at a value for noise quality, as defined by Turner and others (10:274). Work continues at the
Naval Postgraduate School in this area. LEven though Gaussian noise is the most common source of
noise for radar jammers, other noise densities can also be used. Two such noise sources are random

pulses and single frequency, or continuous wave (CW) noise.

Random pulses can be used as one source of noise for a jamming signal. Lawson and Uhlenbeck
present a thorough analysis of the power spectra of random pulse signals (11:43-46). They provide
the derivation of the power spectra for a series of pulses with random amplitudes, random pulse
repetition intervals, and random phases (11:43-46). The power spectrum for a series of pulses
with random amplitudes is a continuous spectrum that has the same shape as the power spectrum
of a single pulse (11:44). However, the power spectrum for a series of pulses with random pulse
repetition intervals is dependent on both the spectrum of a single pulse and the probability density
of the pulse intervals (11:44). Maksimov and others present expressions for the average values of

pulse duration and pulse spacing for random pulse waveforms (12:41). Random pulse waveforms
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may be used alone as a jamming source. A series of random pulses can also be used to modulate

other noise waveforms.

A continuous wave signal (single frequency tone) can also be a source of interference to a radar
receiver. For any given frequency, the CW tone can have a randomly varying amplitude and phase.
Jordan and Penney present an expression for the PDF of the voltage of the CW interference (9:46-
47). The PDF of the amplitude of the CW interference tollows a somewhat parabolic distribution
between the peak voltage values (9:46-47). For the density of the phase of CW interference, in the
case of a pulsed radar it is equally likely that the CW interference is in phase with the received
radar pulse as it is out of phase with the pulse (11.336). As is the case for random pulses, CW

tones can be used alone as a jamming signal.

2.2 Jamming Waveforms

There are several types of waveforms employed in noise jammers. This section will discuss
three main types of barrage jamming waveforms. Barrage jamming refers to radar jamming over a
broad band of frequencies, as opposed to spot jamming which is defined as the jamming of a specific
frequency (6:253,268). These barrage jamming waveforms are direct noise amplified (DINA), fre-
quency modulated (FM) by-noise and amplitude modulated (AM) by-noise. The majority of what
follows in this section is taken from a chapter of Electronic Countermeasures entitled “Effectiveness

of Jamming Signals” by Bennighof and others (1:14-1-14-65).

DINA is merely amplified, bandlimited Gaussian noise (1:14-9). Over the passband of interest,
DINA can be considered white (uniform PSD) (1:14-9). DINA can be easily generated by amplifying
low level thermal noise (1:14-9-14-10). DINA has all of the properties of white Gaussian noise.
For the purpose of analyzing the effcets of DINA on radar receivers, the noise can be considered
to be additive. That is, the noise is added to the radar signal prior to reception. The analysis of

the effects of additive white Gaussian noise (AWGN) is presented in several radar texts. Skolnik
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gives an analysis of the effects of AWGN on a radar’s probability of detection and probability of
false alarm (18:23-29). There are other jamming waveforms employed in radar jammers that are

not truly Gaussian, but approach a true white Gaussian noise source.

In addition to DINA, FM-by-noise is one frequently employed class of noise jamming wave-
forms. There are two distinct types of FM-by-noise: FM-by-WB (wideband) noise, and FM-by-LF
(low-frequency) noise. (1:14-10). Each type of FM-by-noise waveform has different effects on radar

receivers, FM-by-noise is used extensively in current radar jammers.

One frequently used noise jamming waveform is FM-by-WB noise. FM-by-WB noise produces
a.spectrum nearly the same as that of DINA. (1:14-10). Bennighof and others showed that the noise
output of a radar receiver’s IF filter due to FM-by-WB noise can be the same as the IF filter output
due to DINA (1:14-10). The effects of FM-by-WB noise are the same as those of DINA when the
bandwidth of the barrage jamming waveform is greater than the noise bandwidth, and greater than
the receiver bandwidth (1:14-22). Another FM-by-noise waveform used in several noise jammers is

FM-by-LT noise.

FM-by-LF noise is produced in much the same way as FM-by-WB noise, but the noise signal is
confined to a much narrower modulating bandwidth, a bandwidth less than the victim radar’s band-
width (1:14-10). Bennighof and others point out that FM-by-LF noise has two main advantages:
FM-by-LF noise produces more power out of the victim radar’s IF filter than does FM-by-WB
noise, and FM-by-LF noise is more effective in the jamming of radar systems which use plan po-
sition indicator (PPI) displays (1:14-10). They also point out that FM-by-LF noise has one main
disadvantage, that its effects are easily negated by electronic counter-countermeasures (ECCM)

(1:14-10).

FM-by-noise is an extremely popular jamming waveform. Cassara and others describe a
technique to generate a uniform PSD jamming signal from a Gaussian source using an FM-by-noise

method. (2:330). The technique they present is to pass Gaussian noise through a nonlinear network,



followed by a fr. q :ency modulator (2:330-332). The result of their work was an extremely good
source of uniform PSD noise over an electronically controlled bandwidth (2:332). The analysis
presented by Knorr and Karantanas was mainly geared towards the study and optimization of
FM-by-noise waveforms (10:273-277). The results of their study gave an indication of methods to

improve the noise quality of an FM-by-noise waveform (10:275-277).

Another jamming waveform, although used much less frequently than FM-by-noise, is AM-by-
noise. The AM-by-noise effects are similar to those of DINA, but it is difficult to produce wideband
noise in this manner (1:14-11). This difficulty arises because the bandwidth of the AM-by-noise
waveform is limited te tvice the bandwidth of the modulating noise (1:14-11). This bandwidth
limitation results from the property that the bandwidth of any AM (double sideband) signal is
equal to twice the bandwidth of the modulating signal. Another reason that AM-by-noise is not as
popular for use in jammers is that part of the total power transmitted by an AM-by-noise jammer
is lost in the carrier (assuming large-carrier AM). In fact, no more than 50 percent of the total

power will be in the jamming portion of the signal. The remaining power is in the carrier (12:37).

A further jamming technique is one that employs random pulse modulation. With this
method, either an FM-by-WB noise or DINA waveform is pulse modulated. (1:14-11). The re-
sulting random pulse jamming waveform employs random duration, spacing, and amplitude of the
pulses, where the average pulse duration should be the same as the victim radar’s pulse width
(1:14-11). The effects of the random pulse jamming waveform are similar to those produced by
the FM-by-LF noise waveform (1:14-11). The most effective random pulse jamming signal is one
in which the amplitude, pulse duration and pulse interval are all varied randomly. However, such
a signal is difficult to generate (12:42). It is much simpler in practice to generate a signal with

constant amplitude pulses where the duration and pulse interval are varied randomly (12:42).
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2.8 Summary

As this chapter has pointed out, a great deal of work has been accomplished in the area of
noise jamming. This literature search has concentrated on the sources of electrical noise and on
noise jamming waveforms. Equations for the PDF’s and PSD’s of several different noise sources
have been developed. There has also been much effort in the area of analyzing noise jamming
waveforms. The goal of this review was to determine the most current information on these two

subjects.



III. Power Spectra

One of the main parameters to consider when studying the effects of jamming on radar
receivers is the power spectral density (PSD) of the noise waveform. The PSD describes the
frequency distribution of power in the noise jamming waveform. In this chapter, the power spectra
for three cases is developed. First, the PSD for the shot noise in a parallel-plate diode is derived.
Next, the PSD for a series of pulses of random amplitudes and spacing is developed. From this PSD,
the special cases of the PSD for random binary transmission and the boxcar spectrum are derived.
Lastly, the power spectrum for the general case of a series of pulses with random amplitudes,
spacing, and phases is derived. For this general case, the special cases of the PSD of the random

binary transmission and of the random telegraph signal are developed.

3.1 Shotl Noise

In this section, the power spectral density of the shot noise in a temperature-limited parallel-
plate thermionic vacuum tube diode is be derived. Much of the development here follows the

treatment of this subject by Davenport and Root (4:112-124).

The anode current pulse due to the travel of a single electron is represcnted by the following

equation:

ic(t)={ B - s (3.1)

0 , elsewhere

where
g — charge per electron ( —1.6 x 10~! Coulomb)

74 = transit time
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The total current flowing through the vacuuin tube diode is the sum of the individual electron
current pulses. The total current in a time interval (—~T, T) resulting from the flow of I{ electrons

is represented by the following equation:

K

I0) =) ie(t=t) for -T<StT (3.2)
k=1

where

{1 = emission time of the kth electron

The number of electrons emitted in a given time interval is assumed to have a Poisson dis-
tribution. The probability of K electrons emitted in a time interval 7 is given by the following

expression for the Poisson distribution:

P(K,7) = (ﬁr)x—ej"{ﬁ’(?_@ (3.3)

where

7 = average number of electrons

The following statistical properties are obtained from the Poisson distribution:

E.(K) = 7r (3.4)
E, (K?) = mr+(ar) (3.5)
Var,(K) = 7r (3.6)
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8.1.1 Average Current The total diode current I(t) is a function of the  .al number of

electrons emitted, X, and the emissi a times of each electron, the 1;’s. These terms are all random

" variables. The average current is obtained from the expected value of the total current I():

E[I() = /_ : . /_ : IOty oy tie, K)dty - .. diged K (3.7)

The joint PDF of the number of electrons and the emission times may be written

pQyy . atx, K)=p(,..., ik | K)p(K) (3.8)

The emission times, the t’s, are independent, uniformly distributed random variables with proba-

bility density function (4:117-119)

o o tSSt+2T

p(tx) = (3.9)

0 , eclsewhere

Since the t’s are statistically independent random variables, the joint PDF of the emission times

and the number of electrons becomes

P, i, K)=p (1, | K)...p(tk, | K) p(K) (3.10)

and the expected value of the total current can be written

E{I1(t)]

B (K)dK /°° /00 I(t)ﬂl ik
(

/w I{)df{/w---fwii (-t L
oot oo e 2N T T

R =1




E[I@)] /_ : p(K)dK [i (%)K /_ Z dty - /_ i dtg-1 /_ ; e (t —tk)dtl{]

1
/ Z p(K)IK [ (%)K (2T)"*‘q] (3.11)

Let I(t) = E | I(t)). The expected value of the current (the DC current) is

=
1)

M=

b
1]
-

) K q
KYdK —-
-/;oo P( ) =1 2T

q o0
= o= /_ _ Kp(K)dk

= 1z
= 2TE2T(K)

~]
]

= 7q (3.12)

3.1.2 Power Speciral Densily By the application of the Wiener-Khinchine relationship,
which states that the power spectral density of a stationary process is obtained from the Fourier
transform of the autocorrelation function, the power spectral density is obtained (17:145). The

autocorrelation function is derived as follows:

Ri(7) E[IMI + 7))

oo o0
/ / I(t)I(t+T)p(t1,...,ij(,1&')dt1...dtk(lK
-0 -0

©0 o K K
/ / S il =) S iel 7= )Pl st K)dts .. dixcdK (3.13)
- =0 =1 ji=1

Because the ¢'s are independent and uniformly distributed with the probability density function

of Eq ( 3.9) the equation for the autocorrelation function may be written

34




Ri(7)

dt dt
/ p(KdK/ / Eze(t—t)zht+r ) 21{.. 22’:

K& dt1 T dix
/ p(K)dK ZZ o] dt=t)itrr-t) oo | (314)
—-00 -7

i=1j=1

There are I{? terms under the double summation: K terms when i = j, and K2 — K terms

when 1 # j.
Fori=j
T 4t T : dix 1\¥ P
[ [ aemwierr-n3E = (7)) @ [ oo
1T
= = /_ (et e (3.15)
Forisj

J

T T K
dty . Y 'dtx _ 1 vK—Z/- N
vy
X/ te(t+ 7 —1;)dt;
-7

(5%)2 /_ 2 i(t)dt /_iic(t)dt

¢ <%) 2 (3.16)

Combining the above two cases, the autocorrelation function of the total current is now
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Ry(7)

/ . [(1{2_1( 2T) +2£§‘~ 1e(t)2e(t+r)dt] p(K)dK

= (22 / (K? — K) p(K)dK
+ ['2‘1"' /_ 3} ie(t)ie(t+'r)dt] /_  Kp()dK

1)2 Eop (1{2 - I{) + %E;)T (.K) /°° ic(t)ie(t -+ T)dt (3.17)

T

Using Eqs ( 3.4) and ( 3.5) the expectations are

Exp(K) = 2Tw (3.18)

Eyr (K? - K)

(2Tm)* (3.19)

With these expectations, the autocorrelation function is

Ry(7) (2—411';)2 (@T7)° + % (2T7) [:: e(L)ie(t + 7)dt

(gn)* +7 /_ o:o io(1)i(t + 7)dt (3.20)

The shot noise current of interest is the AC portion of the total current (the fluctuation about

the mean value). Let i(t) be the AC diode current:

i(t) = I(t) = I(t) (3.21)

The autocorrelation function of the AC current is
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m@):ﬁ/m@ama+rwt

-0

(3.22)

Since the shot noise is a stationary process, the Fourier transform of the autocorrelation

function of the process yields the power spectral density of the shot noise:

Si(f)

/°° R;(T)e"'z”’dr

o0 (o2 .
- / ﬁ/ o ()ie(t + T)dte=I2 I dr
-0 J=0

Let 7 =1 — ¢, so the power spectral density now becomes

oo ) , 0
Si (f) ﬁ/ ie (t)e_.’ 27’!(1 —t)dt / ie(t’)dt’
-00 00

© s 0 3 1
= W / ie(t)e! ¥ dt / i (t")e~ 2" qy!

—00 -0

Let G(f) be the Fourier transform of the current pulse:
® »
G(f) = / io(t)e™ 7w dt
—00

where

w=27f

so that the power spectral densiby is

Si(w) =7 |G(w)|*

(3.23)

(3.24)

(3.25)

(3.26)



For low frequency values (f <X 1/7,) the PSD is approximately

Si(w) = 7|G(O) (3.27)
From Egs ( 3.1) and ( 3.25) G(0) = ¢ and it follows from Eq ( 3.12) that the power spectral density
is approximated by
Si(w)~1Ig (3.28)
which is the Schottky formula.

3.1.8 The Power Speciral Densitly for the Parallel-Plane Diode In this section the power
spectral density for the shot noise from the parallel-plane diode will be developed. The expression
for the power spectral density is given by Eq ( 3.26). The current pulse is defined by Eq ( 3.1) and

the Fourier transform of the current pulse is

Ta .
Gw) = / 2—Zte"”‘dt
0o T
a

|
3,
—
—~
=

— COSWTg — WTaSINWT,) + J (Sinwr, — w7, cOSWT,)) (3.29)

The square of the magnitude of the Fourier transform of the current pulse is

2 3
[G(w)l2 = (3: )4 [(] — COSWT, — WTy sinwra)2 + (sinwrg — wTg cosw'ra)z]
a
4q° 2 .
= ( )4 [(wra) +2(1 - coswTy — wrg smwra)] (3.30)
WTg




Substituting the above equation into Eq ( 3.26) the power spectral density becomes

Dome
Si(w) = (:%7—)1; [{wra)2 +2(1 = coswrg —wmy sinwra)] (3.31)

a

From Eq ( 3.12) 7ig = I and the power spectral density becomes

Si(w) = (cj—:i“ [(un'a)2 +2(1 - coswry —wmg sinwra)] (3.32)

which is illustrated in Figure 3.1.

Si(w)

o2y
1

I l ] i
-4 —27 0 27 47
Normalized Radian Frequency, w/7q

Figure 3.1. Parallel-Plane Diode Shot Noise PSD

This equation agrees with the expressions for the PSD derived by Davenport and Root (4:124) and

Papoulis (14:357-360).




3.2 Pulses with Random Amplitudes and Intervals

The power spectral density for a series of pulses with random amplitudes and pulse intervals
is developed here. An infinite series of pulses with random amplitudes and intervals is defined by

the following equation:

y(t) = i arg(t — kT, ~ ex) (3.33)

k=—00

where ay, is the pulse amplitude with PDF p(a), T, is the average pulse repetition interval, and e
is the deviation from T, of the kth pulse with PDF p(e) and E(¢) = 0. The series is truncated to

a finite interval from —=NT, to 4-NT,:

N
() = Z arg\t — kT, — 1) (3.34)
k=-N

A portion of a series of pulses with random amplitudes and spacing is illustrated in Figure 3.2.

The Fourier transform of the sequence is

N
Yn(f) = G(f) Y, ape™i2r/(Tota) (3.35)
k=~N

where the Fourier transform of a single pulse is
0 .
G(f) = / g(t)e=i2S (3.36)
-0

3.2.1 Power Speciral Densily The expected value of the power spectral density is derived
here. The expected value will be used since the ay and ¢, terms are random variables. The average

PSD is defined by
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To+€1"‘To+€2 e— T, + €3 —

az

a4

ay [ 2N

Yn (t) 0
Time, t

as

Figure 3.2. Series of Pulses with Random Amplitudes and Spacing

S = Jim G W Or (3.37)

where there are approximately 2N + 1 pulses between —NT, and +NT,. The square of the mag-

nitude of the Fourier transform of the series of pulses is represented by the following equation:

N N
Wn(NE=IGNE S S arae-in(Tota)ghize/(Tta) (3.38)
k==Nl==N

The expected value of the above equation is

N
2 T D

—_ N B
v = G >, > [eri2n*Togtin/iTe

k==NI==N
x B (a;,.aze'jz"f"‘e'*'j?"/")] (3.39)
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Since the ax’s and €;’s are statistically independent the expectation in the above expression has

the following values

B (akale—jhfqe+j27rfq) - E(a?) , k=1 (3.40)

E*a)|B(f)* , k#l

where

vdn)= [ el (3.41)

which is the characteristic function of the deviation, €.

There are 2N +1 terms where & = I. Therefore the expression for the square of the magnitude

of the Fourier transform becomes

Yn(HIF = 1G(HIP | 2N + 1)E(a?) + BX(a) [2(F) DY oi2n /M ogtizn/iTe (3.42)
Fl

The double summation in the above equation may be written

N N
Zze—j27rjkT,e+j2rleo - —(2N+ 1)+ Z Z e-jZ.rjkToe+j27rﬂTo
k#l k=-Nli==-N
N . 2
= —@N+1)+]| ) e (3.43)
k==-N

so that the expected value of the magnitude of the square of the Fourier transform now hecomes
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(P = |G(f>|2{<2N+1> (2 - () 12 )]

2} (3.44)

N
2 e—j21rjkTo
k==N

+E*(a) |2

The average power spectral density is arrived at by taking the limit of the above expression-as N

approaches infinity:

50 = Jim ——1——-|G(f>|2{(21v+1) [B@) - B@)laanl]
FR@IB(NP| 3 e

N—co (2N + 1)T,
2}
k==N

= lsur {%2) - (@) (I

N
Z e-—j27|’fkTo
k==N

1
2N +1

+E*(a)[@()|* Jim

2
} (3.45)

The summation in the above equation may be expanded using Euler’s formula and can be written

N -1
Z e—j21r,lkTo = 14 e-—j.”.rfkTo_*_ Z e—j27rfkT,,
k==N k=1 t==N
N N
= 1+Ze—j27r[kTo+Ze+j21rfkTo
k=1 k=1
N
= 1+ Z (e—j27rjkT, + e+j21rjkTo)
k=1

N

N

= 142 cos2afkT, (3.46)
k=1




The following expression for the sum of cosines is given by Eq (1.342,2) from Gradshteyn and

Ryzhik (8:30):

Z cos kx = COS {BSHI 2 COSGC—' +1

which can be manipulated to the form

cos m'—-:c sin —-

N
Zcosk:v = T—
k=1 1 2

Using Eq ( 3.48) the summation in Eq ( 3.46) becomes

L) 27 fkT, sin ¥22[kTe
sin 2&LETe 2”°

N
Z =32 ko = 1 4. 2°°S(
k==N

Using the trigonometric identity
. 1. 1.
cos Asin B = 5 si (A+ B) - Esm(A ~ B)

the summation can be expressed as

s —jonfkT, sin (2N + 1) 7 fT, - sinw fT,
> e ° = 1+ ,
sinw T,

sinwfT, +sin (2N + )7 fT, — sinx fT,

k==N

sinw fT,
sin (2N + D)7 fT,
sinwfT,

The limit now becomes
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(3.48)

(3.49)

(3.50)

(3.51)



N 2 . 2
) —ioxfk ) 1 sin (2N + 1) fT,
j2xf kT, -
LRy ran) k:L_jNe Ry vany) [ T (3:52)
By letting
Q= (2N + 1)
a=afT,
the limit can be expressed
N 2 . 2
. 19 [sinaQ)\ Ry
: —joxfhTs| . o 2|3
NI, 2N +1 k;Z_Ne - nl-l-ongo Q [’:T ( aQ } ] (sin?—a) (3:53)

Using the following expression for the limit of the square of the sins-over-argument in the above

equation

. Q (sinaQ)?
leads to the following form
: N ~j2nf kT, 2 o’
Nh—r.noo 2N +1 LZ ¢ sin 2cvé(a)
=N
o?
= w&(a)sin Tal._, (3.55)
By L’Hépital’s rule, the following result is achieved:
2
! a —
I gy = (@50

which leads to the following equation:
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N 2
E eI IKTo| = 2§(x fT,) (3.57)

k==N

Ny v,

Using the following property of the delta function

8(af) = 1160 (3.58)

the limit can now be written

1 | y 2 1
: —=j2xf kT, - 35
NN ,k_f_; ¢ ;%) (3.59)
However, the expression
sin (2N + Da fT,
sinw fT, (3.60)

is periodic, with period T,. So, the limit of the above summation becomes

N

Z e=i2xS KT,
N

2N +1 o

o
&

lim
N—co

=1"1’"o,§6<f—%) (3.61)

Substituting the above expression into Eq ( 3.45) the average power spectral density becomes

n=0

5= I6OP {E(cﬁ) - PO + 3 P@ RO 6 (£ - _,F)} (3.2

This expression for the power spectral density is similar to those derived by Lawson and
Uhlenbeck (11:43-44). However, this expression takes into account both random amplitudes and

random intervals, where Lawson and Uhlenbeck have separate equations for each case. Also, the
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magnitude of the expression derived here is one half the magnitude of the expressions derived by
Lawson and Uhlenbeck. The difference is because Lawson and Uhlenbeck use a one-sided spectrum,

whereas the spectrum derived here is two-sided.

3.2.2 Special Cases In thissection, two special cases of PSD of a series of pulses with random
amplitudes and spacing. First, the power spectral density of the random binary transmission is

derived. This derivation is followed by the development of the boxear spectrum.

3.2.2.1 Random Binary Transmission One special case of the expression for the power
spectral density of pulses with random amplitudes and spacing is the random binary transmission
as defined by Papoulis (14:294, 341). The amplitudes are equally likely, and distributed accordi;lg

to

Pla=1)=Pla=-1)= % (3.63)
Which leads to the following expected values:
El@ = 0
@ (3.64)
E@®) = 1
The Fourier transform of a single square pulse is given by
a(n =7 (2D (”fT)] (3.65)
afT )

where T is the pulse duration. In this case T" is a fixed value. Therefore, the deviation, ¢ is zero.

This implies that p(e) = 6(¢), and ®.(f) is unity. From Eq ( 3.62) this leads to




n=0

S() = F 6P [E(a?) - Ba)+ 2B Y6 (1 - %)] (3.66)

Substituting Eqs ( 3.64) and ( 3.65) into the above equation yields

sin2(w fT)

27T (3.67)

This equation for the power spectral density is illustrated-in Figure 3.3. This expression agrees

with the power spectral density for the random binary transmission presented by Papoulis (14:341).

5()

=3

"
T 0 T
Frequency, f

‘.<

[t
N[w—
oo

|
=3es

I
o

Figure 3.3. Random Binary Transmission PSD

3.2.2.2 Bozcar Spectrum The special case of the boxcar spectrum is studied here. The

spectrum considered here is the spectrum of the output of a boxcar generator (more commonly
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referred to as a sample-and-hold circuit). The cutput of the boxcar generator is a series of square
pulses with random amplitudes, distributed according to p(a), and with constant width T'. The

Fourier transform of a single, unit amplitude square pulse of width T' is

G(f)=T (“2;{?) (3.68)

As was the case for the random binary transmission, the pulse width is a fixed value, and the

deviation, ¢, is distributed according to

p(€) = 6(e) (3.69)

which implies that ®.(f) = 1. Substituting this value for ®(f) and Eq ( 3.68) into Eq ( 3.62) the

power spectral density becomes

S(f)=T (Si:‘r;’f)z {E(a2) ~ B*(a) + %Ez(a) i 5 ( f- %)} (3.70)
n=0

The following relationship exists for various values of %:

sinw fT 1, n=0

xfT

(3.71)

;=% | 0, n=1,2,3,-

The above relationship implies that the delta function in the equation for the PSD only applies

when f = 0. Therefore the PSD is written

_sin®7fT

(=f)’T

S() { (26 - %) + P70 } (372)
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where E(a2) — E%(a) is recognized as the variance of the amplitude a. This spectrum agrees with

the power spectrum for this case as presented in Lawson and Uhlenbeck (11:274).

3.8 Pulses with Random Amplitudes, Duralions, and Phases

In the previous section, the power spectral density of a series of pulses with random amplitudes
and durations was developed. In this section, the power spectial density for the more general case
of a series of pulses with random amplitudes, durations and phases is developed. The development
here follows closely that of Lawson and Uhlenbeck (11:44-46). A single pulse is defined by the
expression a,e/2™/o!, Further, the phase will change for each pulse, with p(a) the probability

density function of the phase, . Therefore, at the following times the pulse y(t) is defined by

ot oylt) = ageBUene)

ia y(t):azejz"'(fo‘+ax+aa)

tn @ y(t) = apef2TUettartasttan) (3.73)

where the a,’s are real, statistically independent random variables distributed with PDF p(a). The

amplitudes have the following joint expectations:

B@) , k=1
E(arar) = (3.74)
E*a) , k#l

The length of each pulse is distributed according to the PDF p(l) and is defined by

Iy, = the spaciag between times {; and ¢4 (3.75)
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so that the time of occurrence of the kth pulse is

tr=ti+ L+l o+ ey (376)

An example of a series of pulses with random amplitudes, phases and spacing is illustrated

in Figure 3.4.

I .’2 Iy p—ly—s ls }—
a3
al (03) [ N 2N 9
(C3Y)
y(t) 0 -
e () (as) |  Time, t
) as
a4

Figure 3.4. Series of Pulses with Random Amplitudes, Phases and Spacing

Some useful relationships presented by Lawson and Uhlenbeck are expanded here (11:45):

1

Q /°° (Ne—i27Hf=Jo) \ L dahf £ —-jw’ly

@ =, 2 dl = §(f) + J9(f) = Ble™") (3.78)
o0

i = / p(Dldl = E() (3.79)
0
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where
Pn = 2mapn

We = 2'17(f - fo)

Some relationships involving  are presented here. Using Eq ( 3.76)

E(eiwctk) = E[eJ'wc(h+h+la+---+lk-1)]

= vt [ejwc(h+z-.»+---+1k-l)]

= efuehQk-l (3.80)

since the [,,’s are statistically independent. Further, the expectation of the conjugate of the previous

equation is

Beir) = B(y]

= ejwctl(Q-)k—l (381)

Finally, combining Eqs ( 3.80) and ( 3.81) the following relationship results:

1 , k=l
E [eiwc(tk—tx)] - (Q-)I—k , k<l (3.82)
k-t ks

~

Likewise, some relationships involving © are presented here:
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E [ej(ﬁx+ﬁn+'"+ﬁk)] = ok

(3.83)

since the a,’s and therefore the fB,’s are statistically independent. Now combining Eq ( 3.83) with

it’s conjugate, the following relationship is arrived at:

E [ej(ﬁx+ﬁ:+--'+ﬁk)e-.i(l3x+I32+'"+ﬁl)] = (@. )l—k

k-1 , k>1
A single pulse from time ¢ to time t4, is expressed as
y(t) = akeﬁ"(.’o‘+ax+a2+'"+ak)
The Fourier transform of this single pulse from i to t;4 is
. et
Y(f, trodeg1) = akeJ(pl+I32+'"+pk) e=32n(f=Lo)t gt

1%

1 . . .
= _Fu]_cakeJ(ﬁx+ﬂa+"-+ﬂk)(e—1wctk+x _ e"“’"")

A finite series of N pulses from time ¢ to ty41 is

N
Un (t) = Z akejzﬂ(!°t+°’l+°‘2+“'+ak)
k=1

and the Fourier transform of this series of pulses is
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N
Ya(f) = __1_Zakei(ﬁ,+p:+---+m)(e—jwczw e

jwe &
N
= - Z_:A;, (3.89)
where
Ap = akej(ﬁr*'ﬁz'*'""*‘pk)(e—jwcfkh - e—j“’c‘k) (389)

3.3.1 Power Spectral Density The average power spectral density of the series is developed

here. The average PSD is defined by

57 = Jim, =P (P (3.90)

where NTis the average length of N pulses.

The square of the magnitude of the Fourier transform is

N N

1 .
n(HI? = L‘;EZZAkAI

¢ k=11=t

1 [& N-1N=k

we n=1 k=1 I=1

A N-1N-k

= — <E| P +2Re> > Ak+1AL) (3.91)
“e \no1 k=1 1=1

since Z + Z* = 2Re(Z). Using Eq ( 3.89) the first summation in the above equation is
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M=

y 2
Yo l4nf
n=1

{ [anej(pl+p3+"'+pn) (e"jwct"‘*‘l - e"ij‘n)]

3
1}

X
—

ane"j(pl'*'pﬁ'*'""*'pn) (ejwctn-}-l —_ ejwctn)] }

i
M=

[an (e7ivetntt — gmivetn) g, (efWetntr — giwetn)]

=
1
-

1
M=

0'2‘ [2 — ejwc(tn-l-l"‘tn) — e—jwc(tn-i-l—tn)] (3.92)

M
[
=

The expected value of this summation is

E (f} IAnP)

n=1

i E {a% [2 — eIwe(tada—tn) _ e-iwc(in+1—tn)] } (3.93)

n=1

iE(a"’) {2 -5 [ej‘”°(‘"+‘"'")] - K [e‘j“’°(‘"+""")] } (3.94)

n=1

Using Eq ( 3.82) this expectation becomes

N N
E (Z |A,,|2> E@®) (2—-Q - Q%) (3.95)
1

n=1 n=

Since Q + Q* = 2Re()

E (fj |4, |2> NE(a?)[2 - 2Re(9))]

n=1

2N E(a) 1~ 4(f)] (3.96)

Using Eq ( 3.89) the terms inside the second summation are
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Arpdl = [ak+,ei(ﬂx+pz+---+pk+l)(c-.iwc!k+x+x - e—iwctk+l)]
% [ake'i(pl+p:+"'+pk)(el'wc‘kﬂ - e:'wcu)]

_ ak+lakei(l3k+x+ﬁk+z+---+/3k+|)

% [ejw'(tk—tk+x) — efwelte=trqrsr) _ giwe(tipr=tipr) 4 eiwc(‘k+1“k+'+l)] (3.97)

The expected value of this term is

E(Avnd}y) = Elappar)E [ej(”*+‘+”*+°+"‘+”*+')] {E [ej“"("‘""*‘)]

.y [ejwc(tk—ik+x+1)] -E [ej(dc(fk-l-x—fk-}-l)] + B [ejwc(tk.;.;—tk“.;.,)]} (3.98)

By using Egs ( 3.74), ( 3.82), and ( 3.84) this expectation can be expressed

E (Ak+{A;_'.) Ez(a)el (QI Qi _qi-1 + Ql)

B (ArqiAt)

1
E*(a) [2(20) - Q(Q0) - 6(szo)']

The summation of this expectation is

N-1N-Fk \ N-1N=k |- 1 -I
E ( Y Avudl ) = E¥a) 2(Q0) - Qo) - 6(Qe)'
k=1 I=1 / k=1 I=1 l‘ ‘|

Let v = (20). Now, the summation can be written
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i
=
1+
<2
3

(3.102)

The expectation of this summation now becomes

k=1 I=1

N-1N-=k N-1 -k
K (Z Z A};.}.[A;) = Ez(a) : M (2 -Q = é)

Il
&
N
T~
(=]
~—
1

)
1-Q0

T S
x|[v-1- 1L (- )]

(-9*+20-1)

= —E%@ljzg(l—ﬂf[N—I—I%7(1—7Mdﬂ (3.103)

Substituting Egs ( 3.96) and ( 3.103) into Eq ( 3.91) the square of the magnitude of the

Fourier transform becomes

'

(P = (;%{{ZNE(az)[l—m}

—ZE%@Re{I:zO(l-Qf[N-L-T%7(1—7N-q]}} (8.104)
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Using Eq ( 3.90) the power spectral density is obtained:

Sy (f)

1 0 2

= = { B(a?)[1 - - JRG[ 1—9]} 3.105

T | - 4 o e [ 1-9) (3.105)
The above equation for the power spectral density can be quite useful in the given form,

espezially when the terms © and € are real quantities. However, this equation can be expanded as

a function of the component parts of © and Q. The coeflicient of the E%(a) term can be written

Re [0 (1-9)* (1 - 20)']
[1-qef

ReLfZe“-Qf]

o=

(3.106)

where
N = the numerator

D = the denominator

Using Eqs ( 3.77) and ( 3.78), the denominator in the above equation, D, can be written

D = h-90f
= (1-Q0)(1-Qe)
= {[L- A$(f) + BY(H)]) - 5 [A%(f) + Bo(f)]}
x {[L = A(f) + BY(N) + i [A%(f) + B(F)]}
= (L= A¢(S) + BY(N))* + [4(f) + Bo()’ (3.107)
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The components of the numerator are expanded here:

1= = [-¢()-Fe()’
= [1-26(f) + 6°()) - ¥°(N)] - j29(f) [1 - $(F)]
0(1-9) = (A+iB){[1-26(f) + ¢°(f) = ¥*(N)} — 729(f) [1 - (N}
= {A[1-26(0) + () - ¥*(N] +2BY(N) [1 - $()}
+§ {B [1=26() + $°(f) = ¥*(H)] = 249(f) [1 - ¢(H)]} (3.108)
(1-90) = {1-[8(f)+5(N(A+35B)}
= [1— AG(f) + BY(f)] + 5 [4d(f) + Bé(f)] (3.109)

Substituting Eqs ( 3.108) and ( 3.109), the expression for the numerator, N, can be written

N = Re[o(1-9)*(1-90)]
= [1— Ag(f) + B(N] {A[1-26(f) + 42(f) = ¥*(f)] + 2B9(f) [ - ()]}
—[4%(f) + BN {B [1 - 26() + 6°(5) = ¥*(N)] — 249(f) [1 - $(/)]}
= [1-26(f) + ¢°(f) - ¥*(f)] [A - A%(f) — B*$(f))]
+[1= $(N [2BY(S) +2B°9*(f) + 24%9()]
= [1-26(f)+ () - ¥*()] {4 - 6(S) [4* + B]}
+29(f) (1 = 6(N { B +4(f) 4% + B?]} (3.110)

Substituting Eqs ( 3.107) and ( 3.110) into Eq ( 3.106), and after some simplification, the

power spectral density becomes
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2&2{)’1—'T)2{E(02) (1-¢) - E*(a)
(2 PP (A0 W Y 4291 By (P B
(1= Ad + BY)® + (4p + Bg)® |

Sy (f) =

where the ¢ and 9 terms are in general functions of frequency, f. The above equation does not
reduce as elegantly as the equation presented in Lawson and Uhlenbeck (11:45). This is dus to
the introduction here of random amplitudes, while Lawson and Uhlenbeck only consider random

phases and pulse spacing,

3.3.2 Special Cases The power spectral density presented can be a very useful tool to derive
the power spectra of various waveforms. Two special cases of random waveforms are considered
here. First, the PSD for the random binary transmission is derived. Finally, the power spectra for

the random telegraph signal is developed.

3.8.2.1 Random Binary Transmission The special case of power spectral density of
the random binary transmission is derived here from the general case of the PSD of a series of
pulses with random amplitudes, spacing, and phases. Since the random binary transmission is a

baseband process, f, is set to zero. Two methods to achieve this PSD are illustrated here.

First, the amplitudes are assumed to have equally likely distributions as follows:

Pla=1)=Pla=-1)=

o=

(3.112)

which is the same as
p(a) = % [6(a +1) + 8(a — 1)] (3.113)
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so that the expected values are given by

E@@) = 0 (3.114)

E(a?)

i
—

(3.115)

The phase will be assumed to be a constant value of zero. This is because the random amplitudes
account for a phase change of either 0 or 7 radians (with an equally likely distribution). Substituting

the above expectations int Eq ( 3.105)

S(f) = % (3.116)

For the random binary transmission, the pulse spacing is a constant value, T, so that

p(l) = 8(1 - T) (3.117)

and [ = T. Next ¢(f) is derived from p(l) by use of Eq ( 3.78) as follows:

0
il

¢(f) + 39(f)
/oo p(l)c""z""' dl
0

o0
/ p(l) = 6(1 = T)e=3>"1 di
0

—j2nfT

= e

cos 27 fT 4 jsin 2n fT (3.118)
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Now, ¢(f) = cos 2z fT, and the PSD is now

(1 —cos2rfT)
2772 f2
2sin® wfT
2T'x2 f2

sinwfT z
T( L ) (3.119)

S(f)

which is of the same form as the PSD of the binary random transmission presented by Papoulis

(14:341). This power spectral density is illustrated in Figure 3.3.

A slightly different method will be demonstrated, which yields the same result. In this case,

take the amplitudes to be a constant value, so that

E(a) = E(a®) =1 (3.120)

and let the phase changes be either 0 or « radians, with equal likelihood, so that

[a(a) +6 (a - %)] (3.121)

[

ple) =

From Eq ( 3.77) the value of © is derived:

© / p(e)e! ™ da

i .,,,..
[ l B

6(oz) +6 (a - —)J eI oy

= 0 (3.122)
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and A= B =0, so both Eq ( 3.105) and Eq ( 3.111) reduce to

S(f) = [1 - ¢(f)]

= 3.123
Un2 f2 ( )

Since the probability density of the pulse spacing, p(l), has not changed, the PSD reduces to the

form of Bq ( 3.119).

3.3.2.2 Random Telegraph Signal In this section the PSD of the random telegraph
signal is derived. This waveform is defined by Papoulis as a point process with an underlying
Poisson distribution (14:288-290). This process is a baseband process, so the frequency f, will be
set to zero. The interarrival times of this point process will determine the pulse length, I, for the
case considered here. The interarrival times of a Poisson process are shown by Davenport to have

an exponential density (3:471). Therefore, in this case the probability density, p(l), is given by

p(ly =xe=M >0 (3.124)

For the random telegraph signal, the pulse amplitudes transition from +1 to —1, and vice
versa, at each interarrival time. Therefore, one way to view the distribution of the amplitudes and

phases is to set

E(a) = E(a®) = 1 (3.125)

and the density of « to

p(a) =6 (a - %) (3.126)
From Eq ( 3.77) this leads to
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1
.\»
e W=
3
P
R
-
Q.

P

Y

2
=8
R

= -1 (3.127)

so that 4 = —1 and B = 0. Substitution of the above expressions into Eq ( 3.111) yields the power

spectral density of the signal:

1 (1= 24+ ¢% —9%) (=1 — ) + 297 (1 ~ ¢)
S = —=—|(1=¢)-
0 = zam [( 9 i
1 - ¢2 _ .¢2
In2f? | (1+¢) + w} (6128
From Eq { 3.124), the following expectation results:
T = [ neNa
/0 ¢
1
= 3 (3.129)
And, from Eq ( 3.78)
QR = 9+39

il

o0 r
/ p(he~21di
0
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o0
Q = / de~lG2es+A g
0

)Y
= T (3.130)

where w = 27 f. Q can be broken onto its component parts as follows:

A2 Aw

Q= Ntw? INta?

(3.131)

Substituting the above into Eq ( 3.128), the PSD is obtained:

[ 1 - At _ _A%W?
4 (4w~ (AItwd)?

S(w) = o2 2 \? 22
(14 %) + s

A [ (02 +w?)? = A1 = A%2

w? L (202 4 w?)? + A2w?

A w2k

T w? [4MT 5N w‘*]

4)
472 4 w?
4)

S(f) = m (3.132)

This equation for the power spectral density is illustrated in Figure 3.5.

This expression is the same as that given by Papoulis for the power spectral density of the

random telegraph signal (14:341).
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Frequency, f

Figure 3.5. Random Telegraph Signal PSD
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IV. Probability Densities and Ezpectations

The probability density functions of the noise waveform and the signal plus noise waveform,
along with the power spectral density, are one of the most important properties required in the
analysis of the effects of noise jamming on radar receivers. The PDF describes the distribution of
the amplitude of the noise jamming waveform. In this chapter the probability density functions of
the amplitude of the output of both a linear and quadratic detector are derived. These PDF’s are
derived for the case of a noise only input as well as the case of the input of signal plus noise. Lastly,
several expected values are derived. The mean and mean square values are determined for the two
cases: noise only and signal plus noise. Also, the autocorrelation function for the signal plus noise

case is derived for both detector types.

4.1 Probability Densilies of the Oulput of a Linear Detector

In this section, the probability density functions for the output of a linear (envelope) detector
are developed. The PDI"s will be derived for the case of the input of noise only as well as the case

of a signal plus noise.

4.1.1 Probability Densily for Noise Only The noise analyzed here is assumed to be white
and have a Gaussian distribution with mean value of zero and a variance of o2. This noise, n,(t),
is input to the IF filter, whose transfer function is H(f). The noise output from the IF filter, n(t),

can be portrayed in quadrature form as

n(t) = ng(t) cos 2w ft + ny (t) sin 27 f.¢ (4.1)

where

fe = the center frequency of the IF filter passband



The noise components nz(t) and ny(t) are independent, zero mean Gaussian random variables with

PDF’s
1 2
pnz) = = exp (— -2%) (4.2)
1 2
Plny) = —p=exp (—%‘{,—) (4.3)
where
W= o2 / “HE of (4.4)

Because these two noise components are statistically independent, their joint PDF, p(nz, ny), is

1 n2 4+ n2
p(nz, ny) = 5= exp (‘ IZW y) (4.5)

The output of the linear detector, L(t), is the envelope of the input signal, defined by the

expression

Ln(t) = y/ni(t) + ni(t) (4.6)

where the subscript n is to denote the noise only condition. The terms n; and n,, can be transformed

to polar form in terms of L, and ¢, where

ng= Lycos¢, =h (Lll>¢n) (4'7)

ny = Lysing, =hZ(Lm¢n) (4-8)
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The Jacobian of this transformation is

Dl
3
» O
FFE

|

™
3
<
©
b

which reduces to

-
]

L,, cos® ¢n+ Ly sin? dn

= Ly,

(4.9)

(4.10)

The joint density of L, and ¢, can be derived from the joint density of n, and ny by the equation

P(Ln, ¢n) = Dngmy [hl (Lm¢n) ) h2 (Lm ¢n)] J

1 L2 cos? ¢y, + L2 sin® ¢,
oW P (‘ W

I, L
= 27:Wexp( W

(4.11)

From the joint PDF, the marginal PDF of the envelope, p(L,), can be obtained by integrating over

all values of ¢,, so that

2%
P(Lﬂ) = [) P(Ln;¢1x)d¢n

2r ”

_ Ly H
/0 2mW P <_2W)d¢"
Ln ;';,

= WP ( W
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for all values of L,, > 0. This probability density is known as the Rayleigh PDF and is illustrated

in Figure 4.1.

Rayleigh PDF

p(Ln)

1
VW
Detector Amplitude, L,

Figure 4.1. PDF of Noise Only for a Linear Detector

It can be shown in a similar manner that the phase term, ¢,,, is uniformly distributed over

the interval (0, 27), and that L, and ¢, are statistically independent random variables.

4.1.2  Probability Densily for Signal Plus Noise The PDF for a signal plus Gaussian noise
will now be derived for the case of a linear detector. It is assumed that the signal and noise are

added together prior to the detector, and that the signal is

s(t) = a(t) cos 2w fot + B(t)sin 27 £t (4.13)

so that from Eqs ( 4.1) and ( 4.13) the input to the detector, e(t), is



e(t)

s(t) +n(t)

[ot) + o (t)] cos 2mfet + [B(2) + ny ()] sin 27 fet

z(t) cos 2m fet + y(t) sin 27 fet (4.14)

where z(t) and y(t) are independent Gaussian random variables. Since nz(t) and ny(t) are zero

mean random variables, it follows that the means of z(2) and y(t) are now

El()] = oft) (4.15)

Efy®)

A) (4.16)

and the variance of each is W, as was the case for noise only. Now, the joint PDF of z and y can

be written:

(4.17)

_ 1 (z-) +(y-B)?
p(z,y) = 577 OXP [— 57 ]

This density can be transformed into polar form in terms of L1, and ¢,.n, as was done for the

case of noise only, using the equation

p(Ls+na ¢s+n) = Pzy [hl (L.1+m ¢s+n), hz(Ls-*-m ¢s+n)] J (4-18)



where

hy(Lstn; @s4n) = Lo, €08 Gsn
hz(Ls+m¢s+n) = Ls+n sin ¢s+n

J= Ls+n

This leads to the joint density

P(Ls4n, Pstn) ____L3+n exp [— (Lstn €05 $sn = @) + (Lisgn Sin s4n — ﬁ)u]

W 2W
_ Lsgn Lf+,, — 2Ls4n (0 cos s + Bsin dypn) + o’ + 32
= 57 oXP [ o7 (4.19)

To arrive at the PDF of the amplitude of the detector output, p(Ls4ys), the above joint PDF is

integrated relative to ¢,4n over the interval (0, 27):

27
P(Ls+n) = /0 P(Ls+m ¢s+n)d¢s+n

- 2 Lyin exp __L3+n ~2Ls4y (a €0S G54 + Bsin ¢3+n) +a? 4 .32 d¢
o 27W 2W stn
_ Lsn Lip +0?+ 62
= 2w &P ( oW
2%
L .
X ./(; exp [-——-";—" (acos sgn + Bsin ¢,+,,)] ddssn (4.20)

The integral in the above equation is of the form of Eq (8.937,2) found in Gradshteyn and Ryzhik,

and reduces to (8:488)

2%
L .
/0 exp [——;;—" (acos ¢san + fsin ¢,+,,)] dpsgn =271, (%/% Va2 + ﬁ2> (4.21)
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and upon substitution of the above equation into Eq ( 4.20), the PDF of the envelope now becomes

P(Ls4n)

Ls+n ;2-*-71 + (¥2 + p2 L.7+n 2 2

2w P ( oW wlo \ S Ve + P

_ Lsyn Lf+n +a? 42 Lsyn 2 )

= exp <— Y I, W Vo4 (4.22)

for Ly4n > 0. The term I, in the above equation is the modified Bessel function of order zero. This
expression for the probability density is known as the Rician PDF. The Rician PDF is illustrated

in Figure 4.2, similar to the form of a related plot found in Lawson and Uhlenbeck (11:154). Two

values of z = (a? + 32)/2W are plotted in Figure 4.2.

. Rician PDF
W
z=1/4
4
W
z=4
p(LH-n)
2
YW
T T ] T
0 1 2 3 4 5
Normalized Detector Amplitude, L. /v2W

Figure 4.2. PDT of Signal Plus Noise for a Linear Detector

DiFranco and Rubin provide uscful approximations for two cascs of the modificd Besscl func-

tion. For the small argument case (5:344)
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2:2 x‘i g
Io(m)—1+7+a+---,z<l (4.23)

and for the large : ~sument case (5:344)

Io(m)=\/-%(l+8im---),m>l (4.24)

4.1.8 Expected Values The expected values of L and L2 for the noise only and signal plus
noise cases are derived here. Also, the autocorrelation function, L L, for the signal plus noise case
is approximated. First, the case of the average value of the envelope of the noise only output is

considered. With the PDF of L, given by Eq ( 4.12), the average value of the noise amplitude is

given by
(=]
B(L,) = / Lop(Ln)dLn
-0
°L3 (I
= A w—exp (—W) (an
© 2
= 2a / Lie~oIndl, (4.25)
0
where

The above integral is of the form of Eq (666) in the CRC Standard Mathematical Tables (16:465).

Using this relationship, the expectation becomes

E(Ln) = % (4.26)

Next, the expected value of L2 is calculated:




BE(L7) = Lip(Ln)dLy
-0
<) g 2
= A W exp <—-2—W—/;> dL,
1 [*® a
-2_‘7V__/0 aexp (—EW) da (427)
where

a=1L2
da=2L,dL,

This integral is of the form of Eq (661) in the CRC Tables (16:465). After substitution, the

expectation becomes
1 1)’
2 - —— ——
B(ly) = 2w [(2W>}
= oW (4.28)

Now, the expectations for the signal plus noise case are derived. With the PDF of the signal

plus noise output given by Eq ( 4.22), the expectation of Lyy,, is

)
E(Ls-i-n) = / Ls+nP(Ls+n)dLs+n
-00

o [2 L2, +a?+ 2 L

The integral in the above equation is defined in Lawson and Uhlenbeck by the following expression

(11:174):
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v
. gy 2 2
/ t““I,,(at)e"""’dt _(_)(_”i exp < 2 > 1y ( 5 — £ +L,v+ 1;—;%) (4.30)
0

2ppT (v + 1) 4p?

For the case of ¥ = 0, the above equation becomes

o r (L‘.) al a?
n=1 -p?t? S\ B8
/0 = o(at)e P dt = o —22 exp (41)2) 1 (1 5L 4p2) (4.31)
where 1 Iy (a,b; 2) is the confluent hypergeometric function, defined by (11:174)
3
1F1(abz)_1+ t a(a+1) 22  ala+1)(a+2)z2 e (4.32)

b(b+1) 2! " b(b+1)(b+2) 3!

Using the integral relationship of Eq ( 4.31), the expectation, B(Ls4n), becomes

B~ s (2555

3) (2W)3 2 4. 742 2
r(5) g2 ) exp (az.:vﬂ >1F1 (—%,h—a;‘:‘,ﬁ )] (4.33)

From the CRC Tables Eq (605), T' (2) = %’Z (16:460). “Vith this relationship, the expectation can

be reduced to the following expression:

E(L,+n)=\/:1n< =1 a22;,ﬁ2> (4.34)

Lawson and Uhlenbeck provide an asymptotic approximation for ;Fy(a,b;z) for large negative

values of z (11:174). This approximation is
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1Ffi(a, by 2) = I‘(Ib;(ﬁ)a) (-2)~° [1 _ ol _zb +1) +,a(a +1)(e = b; Na=b+2) +-- ] (4.35)

In the above case for E(L;4n), where z = -—‘-”-;%Vfﬁ, the confluent hypergeometric function becomes

1F1 <—%,1;Z> ~ I_I:El%)) (—-Z)% [1 - ‘: + '1'6'1;34' ] (4'36)

By keeping only the first term of the expansion, and substituting into Eq ( 4.34) the average value

of the detector output is approximated by

S

o [T [P E
E(Ls+n) ~ 9 P(%) oW

\/wwz a? 4 32
2 JrV 2w

~ Vot p? (4.37)

Now, the expected value of L2,,, is derived. Using Eq ( 4.22) the expectation is written

E(L34n)

o
/ Lf+,,p(L,+,,)(lL,+,,
~00

L§+n Lf-}-n J a2 i ﬂZ L3+n
== —xn =rT 2 2
W exp( T )Io( W Va +ﬁ°> dLyyn  (4.38)

From Eq ( 4.31) the mean squared value becomes
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‘ 1 o? 4 B2 [T/2)4w? o? + B2 a4 32
B(L%,,) = w=exp (- p ) b= )2 exp( 2W'B >1Fx (—1,1;— 2Wﬁ )]

i
I~
=
2
I
=
=
R
4
-+
k=Y
[
~—

(4.39)

It follows from Eq ( 4.32) that the confluent hypergeometric function in the above equation reduces

to

1i(-1,52)=1~2 (4.40)

Therefore, the mean square value becomes

a? 4 g2
B(L%,,) 2W (1 + 75 )

= 2W 4 a? 4 p° (4.41)

The last expectation considered for the linear detector output is the autocorrelation function
of the amplitude for the case of signal plus noise. TFirst, the joint PDF of z3, 3, @2 and y2 is
required. The subscripts refer to the times ¢; and ¢, respectively. This PDF is a four-variate

Gaussian of the general form

p(X) = [(271')%]\’[":'] - exp [-%(x ~m)T V(X ~ m)] (4.42)
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where

n=4
1 (3]
n B
X= im=
T [49)]
Y2 1 B2

V is the covariance matrix defined by

V=w (4.43)

¢ p 01

. o

which follows from the fact that the x; and y; terms are uncorrelated, but x; and z, are not

uncorrelated. Likewise for y; and y». The term, p, is the normalized correlation coefficient defined

by

cov(z;, z;)

= o(@i)o(;)

(4.44)

As Lawson and Uhlenbeck point out, the equation for the normalized correlation coefficient in this

case can be written in terms of the IF filter transfer function, H(f), as follows (11:155)¢

SO |H()P cos2nfrdf
A0 = T P

(4.45)

where

T=t2-t1
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The above leads to the following equation for the joint PDF of z;, y1, 22 and y:

1 1
p(z1, 91522, 92) = mexp{—m{(xl—al)2+(yl—ﬂ1)2+($2—012)2

+y2 = B2)? — 2p[(=1 — a)(®2 — 2) + (w1 — By ) (w2 — ﬁz)]}} (4.46)

Now the autocorrelation function can be derived:

L[y

o[(Veotva) (Veiea)]
/ /°°( m1+-/l> (\/—"'Jz) p(zy, 113 T2, y2)dzydyrdeady,  (4.47)

The integrals in the above equation can not be solved exactly. However, Lawson and Uhlenbeck
provide two approximations for these integrals; one for the small signal-to-noise ratio case, and
one for the large signal-to-noise ratio case (11:156-157). For the small signal-to-noise ratio case the

autocorrelation is approximately

T

Wiy, = 32W (011+,31+4W) (a2+ﬂ2+4w)

+4Wp (aya2 + B1B2) + 4W2p2] (4.48)

and for a large signal-to-noise ratio the autocorrelation is approximated by
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Lh o~ [(of+67) (o3 + ) 4 wp—2ao2t il
e (400 ot B W e B
W20 (ayas +B162)°
2 [(o?+BD) (o3 + B

(4.49)

4.2 Probabilily Densilies of the Ouiput of a Quadratic Deleclor

The PDF’s of the output of a quadratic (square-law) detector are developed in this section.
As was the case for the linear detector, the PDI’s for both noise only and signal plus noise are
presented here. The output of the quadratic detector, Q(t), can be thought of as merely the square
of the output of the linear detector. For this case, Papoulis gives an expression for the PDF of the

output of a square-law detector for y = az:

py(y) = ﬁa_y [Pz <\/g> + Pz (—\/g)] U(y) (4.50)

‘where
pz(z) = the PDF of the random variable z

U(y) = the unit step function

Since the PDIs p(Ly,) and p(Ls4s) are non zero only for L > 0, the PDF of the output of the

quadratic detector, Q(¢) = L%(t), can be written

p(Q) = ﬁpb (Vo) (4.51)

This result will be used to derive the PDF’s for the quadratic detector. As before the signal out of

the [F amplifier is given by Eq ( 4.13) and the noise process is given by Eq ( 4.1).
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For the case of noise only, the PDF for the linear detector was given by Eq ( 4.12). After

applying Eq ( 4.51), the PDF for the output of the quadratic detector for an input of Gaussian

noise only is

p(@Qn) = ﬁplm (\/m)

_ 1 Qn On
= (2@)We"p(“2’ﬁ)
= %V— €xp (—%) (4'52)

which is only non zero for @, > 0. Therefore, the output of the quadratic detector has an expo-

nential probability density. This PDF is illustrated by Figure 4.3.

Exponential PDI

p(@n)

Detector Amplitude, @,

Figure 4.3. PDF of Noise Only for the Quadratic Detector

A similar approach is taken for the signal plus noise case. By applying Eq ( 4.51) to the PDF

of the signal plus noise given by Eq ( 4.22) the PDT of the signal plus noise output of the quadratic



detector p(Qs4n) is obtained:

p(Qs+n) 2\/__;—8_'?-1’1,”_“ (V Qs+n)

_ ( 1 ) VQs4n exp (_Qa-i-n +012+ﬁ2)10 <\/Cv2;+n m)

2\/Qs+~1 w 2w

_ % exp <_ Qutn ;;2 + ﬂZ) L (___\/Cv?Vm \/m) (4.53)

Figure 4.4 illustrates this probability density function for two separate values of z = (a®+§2)/2W,

similar to to plot of the PDF for the case of the linear detector, Figure 4.2.

P(Q3+n)

7 T T
0 5 10 15 20 25
Normalized Detector Amplitude, Q,4n/vV2W

Figure 4.4. PDF of Signal Plus Noise for a Quadratic Detector

4.2.1 Ezxpected Values The expected values for the output of a quadratic detector are pre-
sented in this section. The expectations of @ and Q2 for the cases of noise only and signal plus

noise are derived. The autocorrelation function for the signal plus noise case, Q,Q>, is also derived.
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The expectations for the noise only case are considered first. With the probability density of Qn

given by Eq ( 4.52) the average value of the quadratic detector output with only a noise input is

2
R

2
|

/ Z Qup(Qn)dQn

A 2Q_I/;- exp (—-29‘/%) dQn (4.54)

The integral in the above equation is of the form of Eq (661) from the CRC Tables (16:465). Using

this equation for the integral, the expectation becomes

B(@n) = g@Wy

= oW (4.55)

Next, the mean square value of Q,,, E(Q2), is calculated from the PDF given by Eq ( 4.52):

E(Q7)

)

/ : Q2p(Q1)dG0

* o @n
A W €xXp (—W) dQn (4'56)

Again using CRC Eq (661), the mean square value is now written

BQY) = W)

= 8W? (4.57)



Now the case for signal plus noise is considered. The PDF of the amplitude of the output of
the quadratic detector when the input is signal plus noise, p(Qs+4n), is given by Eq ( 4.53). This

leads to the expected value of Q,.4.n:

o
E(Qs+n) = / Qs-}-nP(Q:-i-n)dQ:-{-n
-0
00 2 2
Qs+n _Qs+n+6\’ +ﬁ Qa+n ) )
oW eXI)( ST I W Ve + % | dQs4n
_ 1 CY2 +ﬁ2 00 3 t2 ) = > .
= Wexp (——WV——>/‘; t exp —'W Io W\/a +,3 dt (408)
where

t= vV Qs4n
dt = Wé—‘;d‘?s-&n

From Eq ( 4.31) of Section 4.1.3 the expected value becomes

24732 2 2, n2 o)
(@i, = %ex,)(_a;vﬂ)[wz)(zzvv) o (SE) ors (15 52 )]

az + 52
= o —1.1: = .59
2W11"1( 1,1; ST ) (4.59)
where I'(2) = 1 since I'(n) = (n — 1)!. From Eq ( 4.40) in Section 4.1.3, the hypergeometric
function in the above equation reduces to the form (1 — z). Therefore, the expected value of Q,4n

is

a2+ﬂ2)

E(Qupn) = 2W (1+ o



E@Qstn) = 2W4a?+48° (4.60)

Now, the expected value of @2, is derived here. From Eq ( 4.53), the mean square value is

E(Qf+n) = / Q3+np(Qs+n)dQ3+n
2,12 /
/ Qs+n €xp < Qutn ;‘I; +5 ) I ( D \/m) dQs4n
2 )
= We\p< z 2-;,ﬂ2> /0 1% exp ( ) ( : \/——2 dt (4.61)
where
= Q3+n
dt = dQs-*-n

2 Qc}-

As before, from Eq ( 4.31) the expected value of Q2,, is

’ 245 24 42
B(@asn) = %"“’ - +ﬁ [P(?») Y o (azﬂvkvﬂ)m (-2,1;~“a2'“vkvﬁ )}

- aw-,n( ;- 2W ) (4.62)

The confluent hypergeometric series in the above equation can be expanded to a finite series using
Eq ( 4.32) from Section 4.1.3. This expansion is as follows:

22

Pl

3

i Py (-2, ~ 24 (4.63)

)-l
. \_/

This expansion leads to the following form of the mean square value of Q.4
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2 2 2 2\2
2 a? 462 (o +p5%)
sWe 1+ W + )

8W?2 +8W (a® + %) + (o + g2)° (4.64)

E(Qz-i-n)

The last expectaticn to derive is the autocorrelation function of the output of a quadratic

detector. The autocorrelation function is given by

o0 o0
1@z = / .- / (=3 +v) (23 + v3) p(z1, y1; @2, y2)dz1dyr dzadys (4.65)
-0 —00

where p(z1,y1; €2, ¥2) is given by Eq ( 4.46). Lawson and Uhlenbeck provide the solution to these

integrals (11:155). The autocorrelation function of the output of a quadratic detector resolves to

Q1Q: = (a?+ B2 +2W) (of + p% +2W)

+4W p(@y g + 1 82) + 4W?p? (4.66)
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V. Effects of CW Interference

In- this chapter the effects of single frequency or continuous wave (CW) interference are
explored. First, the effects of CW interfercuice on a linear detector is analyzed. Finally, the effects
on a quadratic detector are determined. This analysis closely follows the analysis presented by
Lawson and Uhlenbeck (11:347-353). For this analysis, a square radar pulse is assumed with pulse

width 7 and amplitude S. The pulse is defined by the expression

o) = Ssin(2xf,t+6,) , |tI<% 6.1)

0 , elsewhere
where
fs = signal frequency

6, = random signal phase

It is further assumed that the signal frequency, f;, is centered in the IF filter passband.

The CW interference is represented by E(t):

E(t) = Esin (27 fowt + Ocw) (5.2)

where
few = CW interference frequency

0.y = random ). ase of the CW interference

It is assumed that tlie voltage of the CW interference, E, is much greater than both the signal
voltage, S, and the average value of the noise voltage. The input to the IF filter (neglecting thermal

noise) is the sum of the pulsed signal and the CW interference. Let s;, () be the IF filter input:



Ssin (27 fst + 0,) + Esin (27 fewt 40 l|<
sin(t) = @nfs s) (27 few ew) 5 <% | (5.3)
Esin (27 fowt + 0cw) : , eclsewhere

It will be convenient to put s, (¢) into quadrature form in terms of the center frequency, f;, so that

sin(t) = ao(t) cos 2 fot + B, (t) sin 27 ft (5.4)

For.[t| < %, sin(t) can be manipulated using trigonometric identities into the quadrature form:

sin(t) = S(sinwytcosfst+ cosw,sinb,)

+E [sin (w' +w,)t cosfcy + cos (W' +w,) tsin Oy (5.5)

where
ws = 27 fs

w = we, —wy

sin(t) S (sinw,t cos 0, + cosw,tsin0s)

+E [(sinw't cosw,t + cosw't sinw,t) cos Oy

+ (cosw't cosw,t — sinw't sinw,t) sin few ]

= coswst[Ssind, + E (sinw’t cosfey + cosw'tsin ey )
+sinw,t [S cos 0 + E (cos w't cos Oy — sinw't sin Oy )}

= cosw,t[Ssin0 + Esin (W't + Ocw))

+sinw,t [S cos 05 + E cos (w't + Ow)] (5.6)
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Likewise, when [¢] > £ the input signal becomes

Sin(t) = coswstEsin (W't + 0cy ) + sinw,t E cos (w't + Ocyw) (5.7)

Trom Egs ( 5.6) and ( 5.7) a,(t) and S,(2) can be expressed as

Esin 27 (fow = f)1 + 0] + Ssind, , Jtj<
ao(t) = [ ( i ) cw} ’ I I 2 (5-8)

Esin 27 (fev — fs)t + 0.u) , elsewhere

Ecos 27 (fow — fs)t + 0cw) + Scosl, , i< %
Bo(t) = : (5.9)

Ecos 27 (few — f5) ¢ + Ocuw) , elsewhere

The analysis by Lawson and Uhlen*eck assumes that the IF filter has a Gaussian passband.

The transfer function of this filter is expressed as

1) = e (-55) (5.10)

whare a = 1.18, so that the half bower bandwidth of the filter is B. Here, the frequency will be
taken about the frequency f = f,, which is the center frequency of the IF filter passband. The

transfer function of this filter is illustrated in Figure 5.1 for positive frequencies.

The output of the IF filter, S,u:(t) can be calcuiated by Fourier transform techniques as

follows

Sout(t) = /_ °° Sin(NH(f)e= 32/t df (5.11)

where S;n(f) is the Fourier transform  the input to the IF filter. S;,(f) can be manipulated

through properties of the Fou . r trunsfor... t. he



Gaussian Filter
1_
_\},_
Hy v
T T
fs - % fs fs + %
Frequency, f
Figure 5.1. IF Filter Transfer Function
1
Sinlf) = 3 A = L)+ AU + B+ 32 (B = £) = B/ + 1) (512
where
A(f) = / " olt)e™32™ dt (5.13)
B(f) = / " Bolt)e=i2" 1t dy (5.14)

are the Fourier transforms of &, and S, respectively. Using Eq ( 5.12), sout(?) can be expressed by

the following equation:
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il = 3 [ HOW( = 1)+ A+ L)

+%/_°; H(f)[B(f = fs) = B(f + f,)) &2™4df (5.15)

This expression can be manipulated to the form

sout() = cos2mfit / " A(H)H(f)e 2™t df +sin 27 ft / " B(f)H(f)el*™tdf  (5.16)

= aft)cos 2afst + B(t) sin 27 f,t (5.17)

where
o) = [ AP (5.15)
sy = [ BEDIY (5.19)

By substituting Eqs ( 5.8) and ( 5.9) into the above equations a(t) and B(t) become (11:348)

2

Bexp [~ LUsrlel L sin 27 (fow — )+ O] + Ssin 0y, Jt] < 3

oz(t) = (5.20)
2 2
Eexp [—“—ULI‘;—}!—'L] sin [27 (few — f3) 1 + Ocw) , elsewhere
Eexp —M 08 27 (few — fo)t + 0] + Scosl, , <%
Bt) = [~ oo e = £ 14 0 ’ 2 (5.21)

Fexp [—ﬂlﬂé}&ﬁ] ¢os (27 (few — fs) 1+ Ocw) , elsewhere
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5.1 Effects of CW Inlerference on Linear Deleclion

In this section, the effects of single frequency CW interference on linear detection are analyzed.
Since the CW voltage was assumed to be greater than either the signal or mean noise voltage, the
average output of the linear detector, L, when the input is sou¢(t), is found from the approximation

of Eq ( 4.37) in Section 4.1.3 to be

L=+a2+p2 (5.22)

Using the expressions for a(t) and f(t), Eqs ( 5.20) and ( 5.21), the average value for ] < %

becomes
L = [X2 sin?(w't + 0cyy) + 2X S sin(w't + 0,y ) sin 0, + S* sin? 0,
+X? cos (W't 4 Ocwy) + 2X S cos(w't + Ocyy) cos 05 + S? cos? 0,] H
= {X*+2XS [sin(w't + Ocw)sin 0, cos(w't + Ocw) cos 0] + Sz}% (5.23)
where

W= 277(fcw - f:)

X = Eexp [—_(ﬂ__l"? fc-é'"f: ’]

The above expression for Z can be reduced through trigonometric identities to

T = X2 +2X S cos(w't +¢) + 5] (5.24)

where

¢ =0cy — 05




It was assumed that the amplitude of the CW interference, E, was much greater than the amplitude

of the signal, S. Therefore, the S? term in the above equation is negligible and L can just as easily
g

be written

i
I

[X? +2XS cos(w't + ¢) + 5% cos?(w't + )] d

X + Scos(w't + ¢) (5.25)
When [t| > Z, S =0 and L = X. This leads to the following expression for L:

Eexp [—ﬂf—;*;—;—fzﬁ] +Scos[2m (fow = fi)t+ 9] , ItI<E
Eexp [—-ﬂ%bﬁ] , elsewhere

I= (5.26)
Lawson and Uhlenbeck assume that the video bandwidth, b, is very narrow, so that only
the variation inside of the pulse width, 7, needs to be considered (11:349). Therefore, L is time

averaged over 7 to yield . For the case of the signal present, S # 0

(alHi
]

%/2 X 4 Scos(w't + p)dt

= X+i sin u_)f:+ - sin _w
- w'r g 7Y 2 te
T

= X+ % [sin (% + <p) +sin ( >] (5.27)

where

w,‘:z"r(fcw“fs)
X = L’exp[ JL%LL]




Without the signal present, S = 0 and the above equation reduces to T = X. With this, the

equation for I can be written

X {sin{7 (fow — f5) T+ @] +sinfr (fow — fs)T— ]} , with signal (5.28)

T -_— J7 2 cw—Js 2 S
[ Lcw+a = .DGXP ["'a 4 Be £:) ] + T Uew—To)T
{ —Z-cw = Fexp [—ﬂ%‘;%!—‘-ﬁ] , without signal

To determine the effects of the CW interference, the deflection criterion presented by Lawson
and Uhlenbeck is applied. This criterion states that a detection has occurred if the average value
of the deflection for the signal plus noise over the average value of the deflection for noise only is
on the order of magnitude of the standard deviation of the deflection for noise only (11:161). This

criterion in equation form is (11:163)

-'js+N - yN
VB = (@,)

where k & 1. For the case of the linear detector, Ls.. is derived by assuming several observations

=k (5.29)

are averaged, and that the phase, ¢, is uniformly distributed over the interval (0,2w). Further,
a central limit theorem argument allows the use of a Gaussian density for a large number of
observations of the deflection. The mean of this Gaussian density is iw-ﬂ -i_.w from Eq ( 5.28)
and the variance is 2W. Since fcw.,., - %cw will vary between positive and negative values due to
phase fluctuations, the average will be taken over one-half of the Gaussian density. As Lawson and

Uhlenbeck point out, Ls4n is defined by (11:349)

2 = 2
'E 2 /27\' 1 /OO [.’l: - (Lcw+3 - Lcw)] d d (5 30)
= — T ex — - Z .
S+N BaW Jo 27 Jo p oW 14
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The derivation of Lg4y follows. The Ley4s — Lew term can be reduced through trigonometric

identities to

5
27r(fcw - fJ)T

- ;G;%‘E')T’:sin [ﬂ' (fcw - fs)T] cos

{sin[7 (few = f3) 7+ @] +sin 7 (fow = f5) 7 — @]}

Lcw+s —Lew =

7 cos (5.31)

where

V== ,fc.,s—f. =sin (7 (few - f3) 7]

Substituting the above expression into Eq ( 5.30), gives

Lsen = :cexp (a: g;:;sso) }dxd(p
27
= uv2W+ cosp) e~* VoWdud
’r\,/27r / /J—cﬁf 7 tp) ?
2% 00
= w\/—/ ( - v2Wue'“2du+/ n 7cos<pe“"2du) de (5.32)
'77271';' T W
where

. T=7COS

u= =
d

du V;W

The component integrals of the above equation will be solved here. The first integral reduces to

e

(<] 0
VZWue'“zdu = V2w / ueV du +/ ue'“zdu>
- 0

-
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)
/ VaiWue=* du
=5

1 1 1 72 cos?
"2W{§+ [‘5*‘?"? (‘—27;;—

/W v cos2p
? exp (-—WV_ (533)

The second integral is nearly of the form of the co-error function, and can be written in terms of

the co-error function by

A 2
/ yeospe W du =
-5

aw

where

z=3'%{7y¢'e

W oo (2 [ e
2 coszp(ﬁ 5 e Y du
7

g cos ¢ erfe(—z) (5.34)

This expression can be reduced to a form containing the error functicn by the use error function

relationships found in the Handbook of Mathematical Functions as follows (13:287):

erfe(—z)
erf(-z)-

erfc(—z)

= 1-erf(—2)
= —erf(2)

= 1+erf(z) (5.35)

With the above relationship, the integral can be written

WT

o .
/ yeospe~ du= ¥ cos [l + erf(z)] (5.36)

F124

2
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A series expansion for erf(z), from the Handbook of Mathematical Functions is substituted for the

error function above (13:297):

o 2n41
-u? - 7\/7—" ( l)n
‘/_ o veospe ™ du = - cos ¢ \/_ E T 2n+1)
( 1) cos 2n4-1
= MCOSQO ~ ) ( ;72“’ ) (5 37)
2 \/—E n!(2n+1) '

Substituting Eqs ( 5.33) and ( 5.37) into Eq ( 5.32), Ls+n can be written

1l

Lsyn ,r\/—/z’r {\/%,: Xp <—f;%2¢>
T I o Eyﬁ
QS Sy

2n 27
7\/_ yeosp 73 cos®
+ —— cos pd +/ 08 [ +-- ]d} 5.38
/o e TS | aw T sew3 ey (5:38)

2n+4-1

The argument of the first integral in the above equation can be expanded in a power series of the

form of Eq (1.211,3) of Gradshteyn and Ryzhik (8:22). With this series, the first integral becomes

2

/ \/—ex < 42 cos? >(l(p _ \/‘_W/z;ri( -1)* (jjg'u)zkdw

=0

V[ (- T Lo - apts0

Keeping only the terms up to 42, the integral becomes
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/2w \/——ex ( 7* cos <p> de = \/g(%— g%) (5.40)

The second integral in Eq ( 5.38) reduces to zero. By keeping only the terms up to 42, the

third integral becomes

27 3 3 27 2
0s g
/ yeose | 1588 7 c0°<p+_._]d(p _ / 72 cos? ? o
0 0

VoW e(2w)i VoW
I .
= (541

By substituting the integral results of Eqs ( 5.40) and ( 5.41) into the equation for s+, Eq

(5.38), Ls+n becomes

- 1 w 12 oy
Lsyn T [\/:2—_ (27r 2W) + \/—W]
/ZW ( +i>
T
2w $? [sina(fow — fs)7]?
T{1+TW- [ 7"(fcw""f.s)'r } (5.42)

The term Ly is derived by setting S = 0 in the above equation, so that

— vAi4
Ly = T (5.43)
Now, Lssn — Ly is obtained:
/2W sinaw( fou — f,)r]
T -In= [ 5.44
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Because a very narrow video bandwidth, b, was assumed, the above equation is reduced by a

factor of b7 to arrive at the video output:

- _ S%r 2w [gy 7(few "fs)T]z (5.45)

_I:S+N_LN=_4-I/—V— T 1 (fow—f3)T

To arrive at the standard deviation of the CW and noise only, the power spectral density will

first be obtained. The PSD of the CW plus noise is derived by taking the Fourier cosine transform
of the autocorrelation of the output of the linear detector. Since it was assumed at the outset that
the CW power was much greater than the noise power, the large signal approximation from Section
4.1.3, Eq ( 4.49), is used for the autocorrelation function. As Lawson and Uhlenbeck point out,
“since E > W, the main contribution to the continuous spectrum of the linear detector output

come from the term proportional to p ¥ (11:350). So, the autocorrelation becomes

ayaz + PP
(o + 2) (o} + BR))

IiLz = Wp(7) (5.46)

where oy and ay are from Eq ( 5.20) with S = 0 at times ¢; and t2 respectively. Likewise, the £

terms are from Eq ( 5.21) with S = 0. Now, the autocorrelation becomes

X?5in Oy sin O + X2 cos O cos Oy
[(X2 sin® ©; 4 X2 cos? Ol) (X2 sin Oy + X2 cos? @2)] 3
W p(7) (sin ©y sin O3 + cos O cos O3)

LiLy = Wp(r)

Wp(7) cos(©1 — ©3) (5.47)



where
X = Doy [~z
Oy =27 (fcw - fs)tl + Ocw

Oy =27 (fcw - fs)t2 + 0w

With the above relationships, the autocorrelation becomes

I, = Wp(r) cos [2 (fow — fs) 81 — 27 (fow — f5) 12]

= Wp(r)cos (27 (few — f5) 7] (5.48)
Next, the normalized correlation coefficient, p(7), is calculated by the use of Eq ( 4.45).

_ IS \H(f))? cos 2x frdf
S T (5.49)

The IF filter was assumed to have a Gaussian passband whose transfer function, H(f), was defined

by Eq ( 5.10). With this equation, the numerator in the equation for p(7) is

212

/oo |H(f)|? cos 27 frdf = 2/°° exp (_2‘;3{ ) cos 27 frdf (5.50)
[ 0

This integral is of the form of Eq (3.896,4) from Gradshteyn and Ryzhik, and resolves to (8:480)

[P o (1 [zB2 [ (27)’ B2
j UI(f)j*cosZmjrdf = 21- —
-0

= % %exp [—% (ZZ—BY] (5.51)
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The denominator reduces to

-] -] 92 £2
[ora = 2 [ e (<55 o

= =,/Z (5.52)

Combining Eqs ( 5.51) and ( 5.52), the normalized correlation coefficient becomes

p(r) = exp [—5 (%B—> } (5.53)

With the above the autocorrelation function becomes

2
LyLa = Ry (1) = Wexp {—--;- (E-:—l-}-}-) ] cosw'r (5.54)

where

w'=27 (fcw - fs)

The power spectral density is calculated by taking the Fourier cosine transform of the auto-

correlation function:

S(f)

00
2/ Ri(7) coswrdr

’rr
/ W exp l-—— —_— Jcosw'rcosw'rd'r



SL(f) = W/o°° exp [—% <_7_r_1;_13> 2] cos(w’ —w)rdr
+W _/; " exp [—-;— (#) 2] cos(w’ + w)rdr (5.55)

The integrals in the above equation are of the form of Eq (3.896,4) found in Gradshteyn and Ryzhik

(8:480). Using this equation, the PSD reduces to

S1(f) LAY {exp [— Gy "“’)2] + [_az(w'+w)2]}

2 V7252 “9rlB2 272B?
2 —_ % 2 - 2
_ };V_Ba\/%_{exp[_mz (fchzf: f) ]:_*_exp {:_20' (fchzf: + f) ]} (5.56)

This PSD is illustrated in Figure 5.2.

&5

Sc(f)

"".(fcwl_fs) 0 fcw Lfs
Frequency, f

Figure 5.2. PSD of the Linear Detector Output
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Since a narrow video bandwidth, b, was assumed, the variance of the CW plus noise video is

251(0)b. Therefore, from Eq ( 5.56) the variance of the CW plus noise video output is

2 2
B-@r = w2 {exP [_uf_B_—_f_z_] - [__2a2 er =5 ]}

2 - 2
_ 2a;Vb \/g exp [_2a (fc;;2 f:)] (5.57)

The standard deviation of the video output is simply the square root of the variance. So, the square

root of Eq ( 5.57) is

Bl = (2)} e[ S578]

From the equation for the deflection criterion, Eq ( 5.29), an expression for the minimum

detectable average signal powex iz derived. The deftection criterion is represented by

Es-m - .EN

-=C (5.59)
[-‘E?:I - (En)z] ’

where C is a constant determined by the radar receiver structure. Substituting Eqs ( 5.45)-and

( 5.58) into the-above equation yields

S2br [2W sinw(f;w—f,)‘r 2_ 2\* [2aWb @ (fow — f5)’
W T{———w(fcw— f,)r] =¢ (;) VB |~ (5.60)

Lawson and Uhlenbeck define the minimum detectable average signal power as Py = %2—’,,

where T, is the pulse recurrence interval (11:350). Now P, is derived:




- _ Sr
mn =
n To

< oW ab_ff(?)*exp [_a?(fcw—f,f“vr(fcw—f,)r

v

2
o, VB \x B Sinw(foy = f,)r] (5:61)

From Eq ( 4.4) of Section 4.1.1, W can be written:in terms of the IF bandwidth, B, by

wo= o[ ey

00 202f2
= 202/ ex (— )d
| exP B2 If
2B 7

= —\/3 (5.62)

Substituting the above result into Eq ( 5.61) the minimum detectable average signal power becomes

"o

= 40203\/? [abr (2 CHS P (Fow =S| [ 7w = £)7 1P
min = - abT,, 5 ? (;) P = B? [Sin W(fcw - fa)'r]

_ 4062C [xB 1 a? (fcw —fa)zi W(fcw _fs)T 2

= T Ve O [‘ 7 } it

(5.63)

To quantify the effects of on-frequency CW interference, the minimum average power required
for the case of large detuning, Py, (00), is first derived. Large detuningimplies that | fow—f:| > B,
and in this case the CW interference can be considered to be nonexistent (11:351). This derivation
of ’_ﬁmin(oo) roirrors that of the derivation for the minimum signal power when:the CW was present.
First, the numerator of-the expression for the deflection criterion, Tsen — Dsyn is derived. Tsyn

is obtained from the-equation for the expectation of Eq:-( 4.34) in Section 4.1.3:
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— W 1, 2
Ls+~=,/" 1F1( 3l a;;vﬂ ) (5.64)

From the equations for a(t) and S(t), Eqs ( 5.20) and ( 5.21), without the CW signal, the term

a? + (2 = $2. With this, the expected value is

- w 1 5?2
Ls+N=\/7r 1F1( b= WV) (5.65)

Here, a small signal-to-noise ratio is assumed (52/2W < 1). So, keeping on., the first two terms

of the expansion for 1 Fi ( 5 1= 5“’%—) , Eq (4.32) from Section 4.1.3, Ls4n becomes

- W 52
Tsin = \/“ (1+ 4W) (5.66)

The expected value for the noise only case is given by Eq ( 4.26):

In= % (5.67)

Combining the above two equations leads to

(S [T
2 4W 2
2 7rW

= = (5.68)

Isen—In

As-before, becanse of a-narrow video bandwidth, the-above equation is reduced by a-factor of br:

—_ S
L5+N Ln = 4WT —_ (5.69)
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Next, the denominator for the deflection criterion, [L_%, - (EN)Z]% is obtained from the PSD
for the noise only case. First, the Fourier cosine transform of the autocorrelation function, Ri(7)
is taken to obtain the PSD, Si(f). Eq ( 4.48). gives the small signal-to-noise ratio approximation
for Ly L;. For the noise only case, S = 0 and a(t) = 5(t) = 0. Therefore, the only applicable term

of this approximation is the term proportional to p?, and the autocorrelation function becomes

(5.70)

The normalized correlation coefficient, p(7), was defined by Eq ( 5.53). Taking the Fourier cosine

transform of the above ¢ juation yields the PSD:

St(f) 2 /()oo Ri(7) coswrdr

oo 2
= 2 / Zl--E—'g—-ﬂcosc«.vrd*r
0

00 2
= -;%r-/ exp [— (#) ] coswrdr (5.71)
0

The above integral is of the form of Eq (679) from the CRC Tables and reduces to (16:466)

2 §2
S(f) = ngBﬁ exp (— aB‘Z ) (5.72)

As before for a narrow video bandwidth, the variance-is 25,(0)b:

T - G = 619

Substituting Eqs ( 5.69) and ( 5.73) into the expression for the deflection criterion one finds

5-20



]
S2br L4 ~C (Wabﬁ) (5.74)

4w 2 4B
where W was defined by Eq ( 5.62). This equation can be reduced to the expression for Py, (00)

as was done for the case with CW present:

- 40%C [*B,, ._
Prnin(00) = =71/ g3 (404 (5.75)

For on-frequency CW, (f.w = f,), the required minimum average signal power relative to the

power required when no CW is present is given-by

Pipin(0) = (8x2)}
Pin() ~ )

4.75 dB (5.76)

Lawson and Uhlenbeck compare this value with a value of 3.5 dB obtained experimentally by A.
L. Gardener and C. M. Allred (11:351). Lawson and Uhlenbeck also compare experimental data
with theoretical calculations for various-values of 7|f., — fs|. The experimental data was collected
with a narrow video bandwidth and a large IF bandwidth where Br = 2.2 (11:351). This data is
displayed in Table 5.1. As Lawson and Uhlenbeck point out, the theoretical values of infinity for
integer values of 7|f.y — f] arise because S? terms were neglected (11:352). Further, theoretical
values for 7|fow — fs| > 2.5 were not calculated since the equation for Py, is not valid for values
of |fow — fs| > B (11:352). The theoretical values in Table 5.1 are calculated from the following

equation:

P ‘lz(fcw—f.«)2 T {few = fo)T 2
min [_ e ] [simr(fcw —f;)T] (5.77)
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Table 5.1. Theoretical vs Experimental Values of Signal Threshold Due to CW Detuning for a
Linear Detector

Tifow ~ fil Pryin/Prin(0), 4B
Experimental | Theoretical ||
0.5 5.5 3.6
1 13.5 00
1.5 11 10.75
2 15 00
2.5 9 10.3
3 5
3.5 0
4 -2.5
4.5 -3.5
(11:352)

5.2 Effecls of CW Interference on Quadratic Deteclion

In this section an analysis of the effects of CW interference on quadratic detection is accom-
plished. The analysis here closely follows that of the analysis of the effects on linear detection of
the previous section. The average output of the quadratic detector for the case of signal plus noise

is given by Eq ( 4.60) of Section 4.2.1:

Q=2W +a?+ 42 (5.78)

Substituting the expressions for a(t) and B(t) , Eqs ( 5.20) and ( 5.21), the average value of the

detector output for |t| < Z becomes

Ol
1

2W + X2 sin®(w't + 0 ) + 2X S sin(w't 4 0.y ) sin 0, + S% sin? 0,

+X2 cos (W't + O) + 2X S cos(w't + Oy ) cos 85 + SZ cos? 4,

2W 4 X2 4+ 2X S [sin(w't + Ocy) 5in 8, cos(w't + Oy ) cos 0] + S2 (5.79)

5-22




where
W' =2x(fow = f3)
X = FEexp [-—-—(LTL)—G’ S 2]

By the use of trigonometric identities, the above expression for @ can be reduced to the following

form:

Q = 2W 4+ X% +2XS cos(w't + ) + S? (5.80)

where

=0y —~0,

Since it was assumed that E > S, the S? term in the above equation is negligible. Therefore,

neglecting the S? term, @ can be written

Q = 2W + X? 4: 2X5 cos(w't + ) (5.81)

When || > %, S =0 and Q = 2W + X2. This leads to the following expression for-Q:

2W + EZ exp [——JL—M 2]

Q= +2ES exp [— ﬂﬁ‘é’{—@—’-] cos[27 (few — fi)t+4) , JtI<% (5.82)
2W + E?exp [—ML;}“‘,—'&LQ] , elsewhere

Tor & very narvow video bandwidtl, o, ouly the variation inside of the pulse width, 7, needs
to be considered. Therefore, @ is time averaged over the pulse width, T, to arrive at Q. For the

case of the signal present, S # 0
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QR
]

L
-11:‘/2 2W + X2 4-2X S cos(w't + p)dt
-5
2XS w'r w'r
- 2 L 200 s - -sin | ——
= W+ X+ e sm< 5 +(p) sm( 3 +¢>]
w'r

2XS |, ! .
= 2W+X2+W[Sm(u’z'—"-"i'?)-l'-sm(-?—(p)] (5.83)

where
W= 27"(fcw - fa)

X =FEexp [—ﬂ%ﬂ]

When no signal is present, S = 0, and the above equation reduces to 5 = 2W + X2, With these

expressions, the equation for Q becomes

Q= X {sin [ (fow — fo) 7 + ) +sin[7 (fow — fi) T~ ]} , with signal (5.84).
5cw =2W + E?exp [- 2—“1("%"51)3] , without signal

As was the case for the analysis of the linear detector, the deflection criterion will berapplied.

As before, Q. is defined by (11:349):

=~ = 2
— 2 g e [x - (ch+a - ch)]
QS-{-N = \/W/o -2—‘”“/0 rexp § — oW - dxd(p (5.85)

Now, Qg is derived. The Q,,, 1, — Q,,, term reduces by way of trigonometric identities to
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BB = smpsen | Pfes = 107
X {sin [ (fow = fo) 7+ @) + sin[x (fow = £o) 7 = 9]}
* a2 ‘i(fz;——fﬁ sinr (few = f3) 7] co8p
= vesy (5.86)

where

1= 7728 exp [~ LU i [x (fow ~ £,) 7]

Substituting the above expression for '5'cw+, —-5cw into Eq ( 5.85), gives the following equation for

Qsin:

— 1 I foo (z —ycosp)?
= — - """ dzd 5.87
QS+N 7‘_\/2‘;‘_—“,‘/0 A :cexp[ oW Tayp ( )

The-integrals in the above equation were solved in Section 5.1. They reduce in terms of 7 to the

form of Eq ( 5.42):

— 2w z
Qs4n =/ - (1 + 47_W> (5.88)

Substituting the expression for v into the above equation yields the following equation for as-*-N‘

- w ZE? 2 cw ™ Js 2 i cw T Js 2
Qs+~=\/27{1+svf exp [—2a (f32 fi) } [Sl:’r’(r;c{’_f”;zr] } (5.89)

The term Qy is derived by setting S = 0 in the above equation, so that
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Oy =% (5.90)

Now, Qg4n — Qy is obtained:

J— —_ S2E2 w 2 cw —Js 2 i cw T Js 2
Qs4n — QN = =5 \/Zl’—r—exp [-—2a (fB2 f:) ] [SI:&(:U — f‘glr] (5.91)

Since b, the video bandwidth, was assumed to be very narrow, the above equation is reduced

by a factor of br. Therefore, Qs x — Qn becomes

— — SzEzb w 2 cw — Js 2 i cw ™ Js ?
Usen = On =37 T\/?;r—exp [—2a (fBg f) ] [SI:(,;SC{, — f’j;lr] (5.92)

To arrive at the standard deviation of the CW and noise only, the power spectral density
will first be obtained from the Fourier cosine transform of the autocorrelation function. The-auto
correlation function is given by Eq ( 4.66) of Section 4.2.1. Since the only term contributing to

the continuous spectrum of the output-is that term proportional to p, the autocorrelation becomes

01Q; = 4Wp(r) (a102 + f152) (5.93)

where ay and «y are from Eq ( 5.20) with S = 0 at times ¢, and ¢ respectively. Likewise, the 8

terms are from Eq ( 5.21) with S = 0. Now, the autocorrelation becomes

QQ: = 4Wp(r)X?(sin©, 5in Oy + cos ©; cos O2)

4Wp(7)X? cos(©1 — O3) (5.94)
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where

X=F exr‘,,.[_ﬂ,%;.b):]
O =2r (fcn( = f:‘)tl +0cw

O = 27"(fcw - f:)iz +0cw

With the sbove relationships, the autocorrelation becomes

Q2 = AWE’ exp [ _M—] P(T) cos [27" (fcw - fa)tl -2r (fcw - f:) t2]
= 4WE%exp [ ("c‘;ﬁ £)* ] p(r)cos 27 (few — f5) 7] (5.95)

The netmalized correlation coefficient, p(r), was calculated in Section 5.1 by the use of Eq

( 4.45):

p(r),= exp [ -5 (119) ] (5.96)

a

With the above equation, the autocorrelation function becomes

Q1Q2 = Ro(r) = 4W exp [ ﬁﬁ&}'_;z_-_é)j] exp |:—l (%) M] cosw'r (5.97)

where

W' =2mr (fcw - f:)

The power spectral density is calculated by taking the Fourier cosine transform of the auto-

correlation function:




Se(f) = Z/OOORq(r)coswrdr

. 2 - 2 =] 2
= S8WE exp [' 2‘%—('&%&2-] / exp [—-% (w_v;é) ] cosw'r coswrdr (5.98)
: 0

The integral in the above equation was solved in Section 5.1, Eqs ( 5.55) and ( 5.56). Using these

reiationships, the power spectral density reduces to

? Xfow = £)2] [ 200 _f _ P
SQ(f) = 2W;E \/gexp [-W} {exp[—2a (’fcwbzf:, f)]

9 2
o [_ 20 (oo — s +1) ]} (5.99)

This PSD is illustrated in-Figure 5.3.

exp [“'_(LTM ol 2]

2WaE? /2
X "'B—\/;-

Sq(f)

~(few = 1) 0 fow = fi
Frequency; f

Figure 5.3. PSD of the Output of a Quadratic Detector
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Because a very narrow video bandwidth, b, was assumed, the variance of the CW plus noise

video cutput is 25¢(0)b. Therefore, from Eq ( 5.99) the variance of the CW plus noise video output

is

_@.)= 8aWbE2 \/’ [ 4a? (fc.,,- £) ] (5.100)

The standard deviation of the video output is simply the square root of the variance. So, the square

root of Eq ( 5.100) is

@ -@ )2] (;)*w 2a;Vbexp [P2a2(f<‘:;302"f_'3_)i] (5.101)

From the equation for the deflection criterion, Eq ( 5.29), an expression for the minimum

detectable average signal power is derived. The deflection criterion is represented by

-Q-s-m - aN

=cC (5.102)
@ - @’

where C is a constant determined by the radar receiver structure. Substituting Eqs ( 5.92) and

( 5.101) into the above equation yields

S E%r [2W (fcw - fa) Sinﬂ'(fcw - fs)T 2
ex"[ B? ] [ 7 (Fow = Fo) T ]

i _Fy2
C(g) oF ZGWbexp [_202(fcw fs)] (5.103)

BZ

The minimum detectable average signal power was defined as P ;= 5,;:, where T, is the

pulse recurrence interval (11:350). Now, Pyp;, for the quadratic detector is derived:




— S2r

Pmin = T
= 20W jabr (2 t T (few = fs) T 2
~ EWT, TB"(?F) [m] (5.104)

W was derived in terms of the IF bandwidth B insection £.1, and is given by Eq ( 5.62)

where

0B [x
W=T=g (5.105)

Substituting the above result into Eq ( 5.104) the minimum detectable average signal power becomes

v

Prin = 222 2 \/E;( ) |t —f%r]

_ 20%C [=B 3 [ 7 (fow = fi)7
= TF\ za " [m] (5.106)

An analysis of the éffects of the CW interference similar to that for the case of a linear detector

is accomplished here. Fmin(oo)*is derived to quantify the effects of on-frequency jamming. The

numerator of the expression for the deflection criterion, Q@

sqn — @y Is derived first. Qoyn 18

obtained from Eq ( 4.60) of Section. 4.2.1:

Qs+~ =2W + o’ + §° (5.107)

From the expressions for a(t) and B(t), Eqs ( 5.20) and ( 5.21), a? + % = S? when no CW

interference is present. This-leads to
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Quyn =2W +57 (5.108)

The term @, follows directly from Eq ( 4.55):

aN =2W (5.109)

Combining the two equations above yields the following expression:

Qv —@, =5 (5.110)

The above equation is reduced by a factor of.br to account for the narrow video bandwidth. This

results in

Qopw — @, = S%r (5.111)

Without CW interference present, the denominator of the expression of the deflection cri-
terion, [227,‘, - (_Q'N)Z]% is derived from the PSD for the case of noise only, Sq(f). First, the
autocorrelation function is obtained by the application of the expression for Q1Q2, Eq ( 4.66) of

Section 4.2.1. In the noise only case § =0 and o = § = 0. Therefore

@1Q2 = Ro(7) = 4W?p’(7) (5.112)

The PSD is derived by taking the Fourier cosine transform of the aviocorrelation function:




Sq(f)

oo
2 / Ro(7) coswrdr
0

o]
= 8W2/ pX(7) coswrdr
0
00 2
8W2/ exp [- (-ﬂ:—B-) ] coswrdr (5.113)
0

The integral in the above equation was solved in the previous section by the use of Eq (679) from

the CRC Tables (16:466). It reduces to
a2f2
Sq(f) = Bf ( _BT) (5.114)
The variance, QZ, — (Q,,)?, is merely 2So(0)b:

= = o _ 8W2ab
R -@ =3z (5.115)

Substituting Eqs ( 5.111) and ( 5.115) into the expression for the deflection criterion, Eq

( 5.29), one obtains

, sW2ab\ ¥
Sb_c<Bf> (5.116)

Similar to the derivation in the previous section, the above equation reduces to the following

equation for Pp;;(00):

. 202C [xB [(4)*
Prin(00) = == \/ 520 (;) (5.117)

To compare on-frequency CW jamming with the case of large detuning one obtains
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'1?,:;:1(?3) = %(%2)*

= %(1.49) (5.118)

This value for the on-frequency jamming is contrasted with the value of 4,75 dB obtained for linear
detection. Here, the magnitude of the CW jamming signal, E, has a direct impact on the minimum

power required.

Although no experimental data was available for the quadratic detector, theoretical values of
Prnin/Pmin(0) are derived for values of 7|few — fi| < 2.5. These values are tabulated in Table
5.2. As before, Br = 2.2. For values of 7|few — fs| > 2.5, the large detuning causes the effects
of the CW interference to be negligible. This follows from the experimental data obtained for the

linear detector. The theoretical values in Table 5.2 are calculated from

_Pm_in__[ T (fow—fo)T ]2

ﬁmin(o) - Sin 7r(fcw - f,)T (5‘119)

Table 5.2. Theoretical Values of Signal Threshold Due to CW Detuning for a Quadratic Detector

" Tlfcw - fsl -Fmin/.}_)min(o): dB
0.5 3.9
1 o0
1.5 13.5
2 00
2.5 17.9
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VI. Conclusions and Recommendations

6.1 Conclusions

From the expression for the minimum power required for signal detection by the linear de-
tector, Eq ( 5.63), the minimum power is a function of the frequency difference f. — f,. For
on-frequency interference, fey = f,, Lawson and Uhlenbeck show from experiment that the mini-
mum required signal power is 3.5 dB higher than that required when no CW interference is present
(11:351-352). This increase in required :power is compared with the theoretical value of 4.75 dB
(11:352). The theoretical and experimental data in Table 5.1 show that the minimum power re-
quired for detection increases as the detuning increases until the detuning is so great as to render

the CW interference negligible (11:352).

Similarly, the minimum required power for the quadratic detector is given by Eq ( 5.106).
This equation shows that the minimum power for the quadratic detector is a function of both
the frequency difference, few — f;, and the magnitude of the CW signal, E. The minimum power
required when the interference is on-frequency versus the power required without CW interference is
£(1.49). The data tabulated in Table 5.2 show that as is the case for linear detection, the minimum
power required increases until the detuning is so great that the effects of the CW interference are

negligible.

The effect of a pure CW tone as an interfering signal is not a significant degradation. The
effect of CW interference is especially limited when the frequency of the CW signal differs greatly
from that of the carrier frequency of the pulsed radar signal. However, when some other modulation
is present with the CW interference, the combined effects should be much greater than that of an

unmodulated CW signal.
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6.2 Recommendalions

It is recommended that follow-on work be accomplished on this study of the effects of noise
jamming on radar receivers. This follow-on work would include applying the analysis techniques
presented here to the effects of CW interference on different pulsed radar receiver types. Specifically,
these receivers would include matched filter, pulse compression and CFAR receivers. Additionally,
various jamming waveforms should he substituted for the CW interference, and the effects on the
various receivers should be analyzed. Lastly, instead of the application of the deflection criterion,
an analysis by the use of a likelihood ratio test should be used to determine the effects of the

different jamming waveforms on the radar receiver’s Py and Pyq.
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